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1 Introduction

A new generation of monetary business cycle models has become popular, featuring hetero-
geneous agents and incomplete markets (known as HANK models). This new class of models
implies new transmission channels of monetary1 and fiscal2 policy, as well as new sources
of business cycle fluctuations working through household portfolio decisions.3 Much of this
literature so far has focused on specific channels of transmission, shocks, or puzzles. In con-
trast, the present paper takes a more encompassing approach. Concretely, we answer three
questions: First, to what extent does the inclusion of incomplete markets change our view of
US business cycles? Second, can the model even account for US business cycle and inequal-
ity dynamics simultaneously? Third, which business cycle shocks and policies are important
drivers of US inequality dynamics?

For this purpose, we study the business cycle using a technique that has become standard
at least since Smets and Wouters’ (2007) seminal paper, extending this technique to the
analysis of HANK models: We estimate an incomplete markets model by a full information
Bayesian likelihood approach using the state-space representation of the model. Specifi-
cally, we estimate an extension of the New-Keynesian incomplete markets model of Bayer
et al. (2019). We add features such as capacity utilization, a frictional labor market with
sticky wages, and progressive taxation, as well as the battery of shocks that drive business
cycle fluctuations in estimated New-Keynesian models: aggregate and investment-specific
productivity shocks, wage- and price-markup shocks, monetary- and fiscal-policy shocks,
risk-premium shocks, and, as two additional incomplete-market-specific ones, shocks to the
progressivity of taxes and shocks to idiosyncratic productivity risk.

In this model, precautionary motives play an important role for consumption-savings
decisions. Since individual income is subject to idiosyncratic risk that cannot be directly
insured and borrowing is constrained, households structure their savings decisions and port-
folio allocations to optimally self-insure and achieve consumption smoothing. In particular,
we assume that households can either hold liquid nominal bonds or invest in illiquid physical
capital. Capital is illiquid because its market is segmented and households participate only
from time to time. This portfolio-choice component, which gives rise to an endogenous liq-
uidity premium, and the presence of occasional hand-to-mouth consumers lead the HANK
model to have rich distributional dynamics in response to aggregate shocks.

1Auclert (2019) analyzes the redistributive effects of monetary policy, Kaplan et al. (2018) show the
importance of indirect income effects, and Luetticke (2020) analyzes the portfolio rebalancing channel of
monetary policy. McKay et al. (2016) study the effectiveness of forward guidance.

2Auclert et al. (2018), Bayer et al. (2020), and Hagedorn et al. (2019) discuss fiscal multipliers, McKay
and Reis (2016, 2020) discuss the role of automatic stabilizers.

3Bayer et al. (2019) quantify the importance of shocks to idiosyncratic income risk, and Guerrieri and
Lorenzoni (2017) look at the effects of shocks to the borrowing limit.
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To answer the first question, whether the inclusion of incomplete markets changes our
view of US business cycles, we estimate the HANK model using the same set of aggregate
shocks and observables as in Smets and Wouters (2007), covering the time period of 1954
to 2019, and compare it to the representative household analogue (RANK). We find that
both models tell a similar story about the US business cycle, but there are some differences.
Shocks to the risk premium and monetary policy become more important for output and
consumption growth at the expense of shocks to investment-specific technology. This holds
true in particular for US recessions, for which the difference between the HANK and RANK
model becomes larger. Changes in investment technology induce strong wealth effects via
their effect on asset prices that lead to negative co-movement of investment with consumption
in the short run. Key for this mechanism is household portfolio heterogeneity. However, when
HANK and RANK are identically parameterized, the differences between the two models are
more substantial. The estimation makes the dynamics of both models more similar. For
example, the HANK model estimates real and nominal frictions that are smaller than those
in the RANK model.

Turning to the second question, we find that the HANK model can simultaneously account
for US business cycle and inequality dynamics from 1954 to 2019. Our model translates the
business cycle shocks estimated from aggregate data into persistent movements in wealth and
income inequality that are consistent with the U-shaped evolution of the shares of wealth
and income held by the top 10% of US households.4 Since our estimation so far does not
use any cross-sectional information, the good fit of the cross-sectional data can be informally
thought of as passing an over-identification test. In line with this, we find that what we infer
about the aggregate shocks and frictions driving the US business cycle does not change when
we include these distributional data in the set of observables.

Regarding the third question, what drives US inequality, we then re-estimate the model
with two additional shocks that directly affect the distribution of income: the progressivity
of taxes and idiosyncratic productivity risk, which are observable in the data. Including
these shocks and the observables in the estimation provides a further improved fit of the
shares of wealth and income held by the top 10% of households. Income risk, in particular,
is important for income inequality and partly replaces risk-premium shocks in explaining
aggregate consumption growth. Together, income risk and tax progressivity shocks explain
one-fifth of fluctuations in aggregate consumption growth at business cycle frequencies.

4We focus on the top 10% shares taken from the World Inequality Database because these measures are
available from the 1950s onward and are most consistent across alternative data sources such as the Survey
of Consumer Finances. See Kopczuk (2015) and Bricker et al. (2016) for detailed comparisons of all available
data sources.
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We use this extended model for the historical decomposition of US inequality. We find
that different shocks drive income and wealth inequality—measured by their top 10% shares.
Since the 1980s, income inequality increased mostly because of higher profit margins (price
markups), lower wage markups, and higher income risk. Together, these three shocks explain
90% of the increase in the top 10% income share from 1985 to 2019. By contrast, the two
markup shocks and the income risk shock only explain one-third of the increase in wealth
inequality. Shocks that directly affect asset returns, such as technology shocks, are central
for understanding the evolution of wealth inequality. Key for this is portfolio heterogeneity
between wealthy and poor households. Poor households predominantly hold liquid assets,
while wealthy households hold their wealth in illiquid form. Take, for example, a negative
shock to investment technology; this drives up the price of illiquid capital, but at the same
time, reduces the future return to capital. Hence, the current owners of illiquid assets enjoy
capital gains, while saving by the poor is discouraged because of the lower returns.

We also assess the importance of policy shocks and rules in shaping inequality over the
business cycle. Monetary and fiscal policy shocks have contributed to the increase in inequal-
ity since the 1980s, in particular wealth inequality. We then assess counterfactual monetary
and fiscal policy rules. Changing policy rules has a sizable and persistent effect on inequality.
For example, a more hawkish monetary policy, i.e., a stronger reaction to inflation, would
have led to output losses and increased income inequality in the 1970s with a protracted in-
crease in wealth inequality until the 2000s. A more active monetary or fiscal policy response
to the Great Recession would have decreased inequality and would have increased output.
More generally, output stabilization via monetary or fiscal policy also typically stabilizes
inequality.

To our knowledge, our paper is the first to provide an encompassing estimation of shocks
and frictions using a HANK model with portfolio choice. Most of the literature on monetary
heterogeneous-agent models has used a calibration approach.5 Auclert et al. (2020) and
Hagedorn et al. (2018) go beyond calibration but use one-asset HANK models. The latter
provide parameter estimates based on impulse response function matching, while the former
estimate the model using the MA-∞ representation in the sequence space. Using a state-
space approach is key for us, as we need to deal with mixed-frequency data.

Our paper is also related to Chang et al. (2018) in the sense that it estimates a state-
space model of both distributional (cross-sectional) data and aggregates. Chang et al. (2018)
find that, in an SVAR sense, shocks to the cross-sectional distribution of income have only
a mild impact on aggregate time series. Our finding of structural estimates being relatively

5See, for example, Auclert et al. (2018); Ahn et al. (2018); Bayer et al. (2019); Broer et al. (2019); Challe
and Ragot (2015); Den Haan et al. (2017); Ferriere and Navarro (2018); Gornemann et al. (2012); Guerrieri
and Lorenzoni (2017); McKay et al. (2016); McKay and Reis (2016); Ravn and Sterk (2017); Sterk and
Tenreyro (2018); Wong (2019).

3



robust to the inclusion or exclusion of cross-sectional information resembles their results.6

The estimated importance of cross-sectional shocks is also in line with the finding of Berger
et al. (2020) who use a business-cycle accounting approach.

Our findings provide new insights into the literature on the drivers of inequality.7 Kaymak
and Poschke (2016) and Hubmer et al. (2020) use quantitative models to study permanent
changes in the US tax and transfer system and the variance of income. In terms of methods,
these papers solve for steady-state transitions of calibrated models, while we estimate our
model on US macro and micro time-series data. They find that tax and transfer changes can
explain a significant part of the recent increase in wealth inequality. Ours is the first paper to
quantify the distributional consequences of all standard business cycle shocks and estimate
their importance in explaining US inequality. Having both changes in the US tax system and
changes in income risk alongside standard business cycle shocks in our model, allows us to
compare their relative importance for the evolution of income and wealth inequality. We find
business cycle shocks, through their effect on asset prices, to be more important for wealth
inequality than changes in taxes and income risk, but the latter two play a significant role
for income inequality.

Focusing on the methodological contribution, Auclert et al. (2019) provide a fast estima-
tion method for heterogeneous-agent models that requires a sequence-space representation
of the model. We provide an estimation method based on the state-space representation of
these models that easily deals with measurement error and missing or mixed-frequency data,
as we need to do here when combining cross-sectional and aggregate data. We build on the
solution method of Reiter (2009) using the dimensionality reduction approach of Bayer and
Luetticke (2020) to make this feasible for estimation. We further exploit the fact that only a
small fraction of the Jacobian of the non-linear difference equation that represents the model
needs to be re-calculated during the estimation.

The remainder of this paper is organized as follows: Section 2 describes our model econ-
omy, its sources of fluctuations and frictions. It also provides details on the numerical solution
method and estimation technique. Section 3 presents our model variants, the parameters that
we calibrate to match steady-state targets, and prior distributions for the remaining param-
eters that we estimate. It also gives an overview of the data we employ in our estimation.
Section 4 discusses the estimated shocks and frictions driving the US business cycle. Section
5 does so for US inequality. Section 6 concludes. An Appendix follows.

6Our approach is different and simpler than the method suggested by Liu and Plagborg-Møller (2019),
which includes full cross-sectional information in the estimation of a heterogeneous-agent DSGE model. We,
in contrast, only use the model to fit certain generalized cross-sectional moments.

7There is a growing literature on inequality dynamics. On the theory side, see, e.g., Gabaix et al. (2016).
On the empirical side, see, e.g., Heathcote et al. (2010), Piketty and Saez (2003) or Saez and Zucman (2016).
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2 Model

Wemodel an economy composed of a firm sector, a household sector, and a government sector.
The firm sector comprises (a) perfectly competitive intermediate goods producers who rent
out labor services and capital; (b) final goods producers that face monopolistic competition,
producing differentiated final goods out of homogeneous intermediate inputs; (c) producers
of capital goods that turn consumption goods into capital subject to adjustment costs; (d)
labor packers that produce labor services combining differentiated labor from (e) unions that
differentiate raw labor rented out from households. Price setting for the final goods as well
as wage setting by unions is subject to a pricing friction à la Calvo (1983).

Households earn income from supplying (raw) labor and capital and from owning the firm
sector, absorbing all its rents that stem from the market power of unions and final goods
producers, and decreasing returns to scale in capital goods production.

The government sector runs both a fiscal authority and a monetary authority. The fiscal
authority levies taxes on labor income and distributed profits, issues government bonds, and
adjusts expenditures to stabilize debt in the long run and aggregate demand in the short run.
The monetary authority sets the nominal interest rate on government bonds according to a
Taylor rule.

2.1 Households

The household sector is subdivided into two types of agents: workers and entrepreneurs.
The transition between both types is stochastic. Both rent out physical capital, but only
workers supply labor. The efficiency of a worker’s labor evolves randomly exposing worker-
households to labor-income risk. Entrepreneurs do not work, but earn all pure rents in
our economy except for the rents of unions which are equally distributed across workers.
All households self-insure against the income risks they face by saving in a liquid nominal
asset (bonds) and a less liquid asset (capital). Trading illiquid assets is subject to random
participation in the capital market.

To be specific, there is a continuum of ex-ante identical households of measure one,
indexed by i. Households are infinitely lived, have time-separable preferences with time-
discount factor β, and derive felicity from consumption cit and leisure. They obtain income
from supplying labor, nit, from renting out capital, kit, and from earning interest on bonds,
bit, and potentially from profits or union transfers. Households pay taxes on labor and profit
income.
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2.1.1 Productivity, labor supply, and labor income

A household’s gross labor income wtnithit is composed of the aggregate wage rate on raw
labor, wt, the household’s hours worked, nit, and its idiosyncratic labor productivity, hit.
We assume that productivity evolves according to a log-AR(1) process with time-varying
volatility and a fixed probability of transition between the worker and the entrepreneur
state:

h̃it =


exp

(
ρh log h̃it−1 + εhit

)
with probability 1− ζ if hit−1 6= 0,

1 with probability ι if hit−1 = 0,

0 else,

(1)

with individual productivity hit = h̃it∫
h̃itdi

such that h̃it is scaled by its cross-sectional average,∫
h̃itdi, to make sure that average worker productivity is constant. The shocks εhit to produc-

tivity are normally distributed with variance σ2
h,t.8 With probability ζ households become

entrepreneurs (h = 0). With probability ι an entrepreneur returns to the labor force with
median productivity. In our baseline specification, an entrepreneur obtains a share of the
pure rents (aside from union rents), ΠF

t , in the economy (from monopolistic competition in
the goods sector and the creation of capital). We assume that the claim to the pure rent
cannot be traded as an asset. Union rents, ΠU

t are distributed lump sum across workers,
leading to labor-income compression. For tractability, we assume union profits to be taxed
at a fixed rate independent of the recipient’s labor income.

This modeling strategy serves two purposes. First and foremost, it generally solves the
problem of the allocation of pure rents without distorting factor returns and without in-
troducing another tradable asset.9 Second, we use the entrepreneur state in particular – a

8In our baseline, we treat the variance as time fixed. We consider an extension where income risk follows
a log-AR(1) process with endogenous feedback to aggregate output Yt+1 (hats denote log-deviations from the
steady state):

σ2
h,t = σ̄2

h exp ŝt,

ŝt+1 = ρsŝt + ΣY Ŷt+1 + εσt ,
(1a)

i.e., at time t households observe a change in the variance of shocks that drive the next period’s productivity.
9There are basically three possibilities for dealing with the pure rents: 1) Attribute them to capital and

labor, but this affects their factor prices; 2) introduce a third asset that pays out rents as dividends and
is priced competitively; or 3) distribute the rents in the economy to an exogenously determined group of
households. The latter has the advantage that factor supply decisions remain the same as in any standard
New-Keynesian framework and still avoids the numerical complexity of dealing with three assets. If one is
willing to assume that pure and capital rents come in illiquid form, as in Kaplan et al. (2018), pure rents
can be priced using the rate of return on capital. However, this approach requires not only assets (claims on
physical capital and on future pure rents) to be illiquid, but also their corresponding asset income.
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transitory state in which incomes are very high – to match the income and wealth distribu-
tion following the idea by Castaneda et al. (1998). The entrepreneur state does not change
the asset returns or investment opportunities available to households. Our assumption on
the distribution of pure rents implies that higher market power in the goods market leads
to a higher concentration of income and higher mark-ups in the labor market leads to wage
compression.10

With respect to leisure and consumption, households have Greenwood et al. (1988) (GHH)
preferences and maximize the discounted sum of felicity:11

E0 max
{cit,nit}

∞∑
t=0

βtu [cit −G(hit, nit)] . (2)

The maximization is subject to the budget constraints described further below. The felic-
ity function u exhibits a constant relative risk aversion (CRRA) with risk aversion parameter
ξ > 0,

u(xit) =
x1−ξ
it − 1

1− ξ
,

where xit = cit−G(hit, nit) is household i’s composite demand for goods consumption cit and
leisure and G measures the disutility from work. Goods consumption bundles varieties j of
differentiated goods according to a Dixit-Stiglitz aggregator:

cit =

(∫
c
ηt−1
ηt

ijt dj

) ηt
ηt−1

.

Each of these differentiated goods is offered at price pjt, so that for the aggregate price level,

Pt =
(∫

p1−ηt
jt dj

) 1
1−ηt , the demand for each of the varieties is given by

cijt =

(
pjt
Pt

)−ηt
cit.

Assuming a (progressive) income-tax schedule (which we borrow from Benabou, 2002;
10Boar and Midrigan (2019) use a similar structure, where entrepreneurs retain a fraction of firm profits

and thus the size of markups has an impact on inequality in the economy.
11The assumption of GHH preferences is mainly motivated by the fact that many estimated DSGE models

of business cycles find small aggregate wealth effects in the labor supply; see, e.g., Schmitt-Grohé and Uribe
(2012); Born and Pfeifer (2014). Unfortunately, it is not feasible to estimate the flexible form of preference
of Jaimovich and Rebelo (2009), which also encompasses King et al. (1988) (KPR) preferences. This would
require solving the stationary equilibrium in every likelihood evaluation, which is substantially more time
consuming than solving for the dynamics around this equilibrium. However, we estimate a version with
KPR preferences; see Section 4.5 and also Appendix F.2. The data clearly prefer the GHH specification over
the KPR specification. What is more, the KPR version of the HANK model has more difficulty matching
business cycle and inequality dynamics simultaneously.
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Heathcote et al., 2017), a household’s net labor income, yit, is given by

yit = (1− τLt )(wthitnit)
1−τPt , (3)

where wt is the aggregate wage rate and τLt and τPt determine the level and the progressivity
of the tax code. Given net labor income, the first-order condition for labor supply is

∂G(hit, nit)

∂nit
= (1− τPt )(1− τLt )(wthit)

1−τPt n
−τPt
it = (1− τPt )

yit
nit

. (4)

Assuming that G has a constant elasticity w.r.t. n, ∂G(hit,nit)
∂nit

= (1 + γ)G(hit,nit)
nit

with γ > 0,
we can simplify the expression for the composite consumption good, xit, making use of this
first-order condition (4), and substitute G(hit, nit) out of the individual planning problem:

xit = cit −G(hit, nit) = cit −
1− τPt
1 + γ

yit. (5)

When the Frisch elasticity of labor supply is constant and the tax schedule has the form (3),
the disutility of labor is always a fraction of labor income and constant across households.
Therefore, in both the household’s budget constraint and felicity function, only after-tax
income enters and neither hours worked nor productivity appears separately.

What remains to be determined is individual and aggregate effective labor supply. With-
out further loss of generality, we assume G(hit, nit) = h1−τ̄P

it
n1+γ
it

1+γ
, where τ̄P is the stationary

equilibrium level of progressivity of the tax code. This functional form simplifies the house-
hold problem in the stationary equilibrium as hit drops out from the first-order condition and
all households supply the same number of hours nit = N(wt). Total effective labor input,∫
nithitdi, is hence also equal to N(wt) because we normalized

∫
hitdi = 1.

Importantly, this means that we can read off average productivity risk from the estimated
income risk series in the literature. Without scaling the labor disutility by productivity,
we would need to translate productivity risk to income risk through the endogenous hour
response. In our baseline, we keep tax progressivity constant, τPt = τ̄P .12

12In an extension, we allow it to vary over time. There, when tax progressivity does not coincide with its
stationary equilibrium value, individual hours worked differ across agents and are given by

nit =
[
(1− τPt )(1− τLt )

] 1

γ+τPt h

τ̄P−τPt
γ+τPt
it w

1−τPt
γ+τPt
t , (4a)

such that aggregate effective hours are given by

Nt =

∫
nithit =

[
(1− τPt )(1− τLt )

] 1

γ+τPt w

1−τPt
γ+τPt
t

∫
h

γ+τ̄P

γ+τPt
it︸ ︷︷ ︸

:=Ht

. (4b)
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Household after-tax labor income, plugging in the optimal supply of hours, is then:

yit = (1− τLt )(wthitnit)
1−τPt = (1− τLt )

1+γ

γ+τPt (1− τPt )
1−τPt
γ+τPt w

1+γ

γ+τPt
(1−τPt )

t h

γ+τ̄P

γ+τPt
(1−τPt )

it . (6)

2.1.2 Consumption, savings, and portfolio choice

Given this labor income, households optimize intertemporally subject to their budget con-
straint:

cit + bit+1 + qtkit+1 = bit
R(bit,R

b
t ,At)

πt
+ (qt + rt)kit + yit

+ Ihit 6=0(1− τt)ΠU
t + Ihit=0(1− τLt )(ΠF

t )1−τPt , kit+1 ≥ 0, bit+1 ≥ B ,

where ΠU
t is union profits taxed at the average tax rate τt (see Equation 23), ΠF

t is firm
profits, bit is real bond holdings, kit is the amount of illiquid assets, qt is the price of these
assets, rt is their dividend, πt = Pt

Pt−1
is realized inflation, and R is the nominal interest rate

on bonds, which depends on the portfolio position of the household and the central bank’s
interest rate Rb

t , which is set one period before. All households that do not participate in
the capital market (kit+1 = kit) still obtain dividends and can adjust their bond holdings.
Depreciated capital has to be replaced for maintenance, such that the dividend, rt, is the
net return on capital. Holdings of bonds have to be above an exogenous debt limit B, and
holdings of capital have to be non-negative.

Substituting the expression cit = xit +
1−τPt
1+γ

yit for consumption, we obtain the budget
constraint for the composite leisure-consumption good:

xit + bit+1 + qtkit+1 = bit
R(bit,R

b
t ,At)

πt
+ (qt + rt)kit +

τPt +γ

1+γ
yit (7)

+ Ihit 6=0(1− τt)ΠU
t + Ihit=0(1− τLt )(ΠF

t )1−τPt , kit+1 ≥ 0, bit+1 ≥ B .

Households make their savings choices and their portfolio choice between liquid bonds
and illiquid capital in light of a capital market friction that renders capital illiquid because
participation in the capital market is random and i.i.d. in the sense that only a fraction, λ,
of households are selected to be able to adjust their capital holdings in a given period.

What is more, we assume that there is a wasted intermediation cost that drives a wedge
between the government bond yield Rb

t and the interest paid by/to households Rt. This
wedge, At, is given by a time-varying term plus a constant, R, when households resort to

Here Ht measures how the tax progressivity influences the (hours-weighted) average labor productivity.
Scaling of the disutility of labor by h1−τ̄P

it is thus a normalization of Ht to one in the stationary equilibrium.
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unsecured borrowing. This means that we specify:

R(bit, R
b
t , At) =

Rb
tAt if bit ≥ 0

Rb
tAt +R if bit < 0.

The extra wedge for unsecured borrowing creates a mass of households with zero unsecured
credit but with the possibility to borrow, though at a penalty rate. The “risk-premium
shock” At (as in, for example, Smets and Wouters, 2007) is technically modeled here as an
intermediation efficiency wedge, the cost of a banking sector turning government bonds into
deposits.13 This cost follows an AR(1) process in logs and fluctuates in response to shocks,
εAt . If At goes down, households will implicitly demand fewer government bonds and find it
more attractive to save in (illiquid) real capital.

Since a household’s saving decision—(b′a, k
′) for the case of adjustment and (b′n, k) for non-

adjustment—will be some non-linear function of that household’s wealth and productivity,
inflation and all other prices will be functions of the joint distribution, Θt, of (b, k, h) in t. This
makes Θ a state variable of the household’s planning problem and this distribution evolves
as a result of the economy’s reaction to aggregate shocks. For simplicity, we summarize
all effects of aggregate state variables, including the distribution of wealth and income, by
writing the dynamic planning problem with time-dependent continuation values.

This leaves us with three functions that characterize the household’s problem: value
function V a for the case where the household adjusts its capital holdings, the function V n

for the case in which it does not adjust, and the expected continuation value, W, over both:

V a
t (b, k, h) = max

b′a,k
′
u[x(b, b′a, k, k

′, h)] + βEtWt+1(b′a, k
′, h′)

V n
t (b, k, h) = max

b′n
u[x(b, b′n, k, k, h)] + βEtWt+1(b′n, k, h

′) (8)

Wt+1(b′, k′, h′) =λV a
t+1(b′, k′, h′) + (1− λ)V n

t+1(b′, k′, h′)

Expectations about the continuation value are taken with respect to all stochastic processes
conditional on the current states. Maximization is subject to the corresponding budget
constraint.

2.2 Firm sector

The firm sector consists of four sub-sectors: (a) a labor sector composed of “unions” that
differentiate raw labor and labor packers who buy differentiated labor and then sell labor

13In a representative agent framework, this strategy and modeling At as a preference shock are equivalent.

10



services to intermediate goods producers, (b) intermediate goods producers who hire labor
services and rent out capital to produce goods, (c) final goods producers who differentiate
intermediate goods and then sell them to goods bundlers, who finally sell them as consump-
tion goods to households, and to (d) capital goods producers, who turn bundled final goods
into capital goods.

When profit maximization decisions in the firm sector require intertemporal decisions (i.e.
in price and wage setting and in producing capital goods), we assume for tractability that
they are delegated to a mass-zero group of households (managers) that are risk neutral and
compensated by a share in profits.14 They do not participate in any asset market and have
the same discount factor as all other households. Since managers are a mass-zero group in
the economy, their consumption does not show up in any resource constraint and all but the
unions’ profits go to the entrepreneur households (whose h = 0). Union profits go lump sum
to worker households. In our baseline all profit incomes are paid out in the very period they
are earned. In an extension, we introduce retained earnings such that the profit payments of
unions and firms to households are smoothed over time.

2.2.1 Labor packers and unions

Worker households sell their labor services to a mass-one continuum of unions indexed by j,
each of whom offers a different variety of labor to labor packers who then provide labor ser-
vices to intermediate goods producers. Labor packers produce final labor services according
to the production function

Nt =

(∫
n̂
ζt−1
ζt

jt dj

) ζt
ζt−1

, (9)

out of labor varieties n̂jt. Cost minimization by labor packers implies that each variety of
labor, each union j, faces a downward-sloping demand curve

n̂jt =

(
Wjt

W F
t

)−ζt
Nt,

where Wjt is the nominal wage set by union j and W F
t is the nominal wage at which labor

packers sell labor services to final goods producers.
Since unions have market power, they pay the households a wage lower than the price

14Since we solve the model by a first-order perturbation in aggregate shocks, the assumption of risk-
neutrality only serves as a simplification in terms of writing down the model. With a first-order perturbation
we have certainty equivalence and time fluctuations in stochastic discount factors become irrelevant. Of
course in the cross-section, households have different stochastic discount factors depending on whether they
are borrowing-constrained or not. Yet, this does not change the dynamics of the Phillips curves up to a
first-order approximation beyond the steady-state non-stochastic discount factor.
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at which they sell labor to labor packers. Given the nominal wage Wt at which they buy
labor from households and given the nominal wage index W F

t , unions seek to maximize their
discounted stream of profits. However, they face a Calvo type (1983) of adjustment friction
with indexation with the probability λw to keep wages constant. They therefore maximize

E0

∞∑
t=0

βtλtw
W F
t

Pt
Nt

{(
Wjtπ̄

t
W

W F
t

− Wt

W F
t

)(
Wjtπ̄

t
W

W F
t

)−ζt}
, (10)

by setting Wjt in period t and keeping it constant except for indexation to π̄W , the steady-
state wage inflation rate.

Since all unions are symmetric, we focus on a symmetric equilibrium and obtain the
linearized wage Phillips curve from the corresponding first-order condition as follows, leaving
out all terms irrelevant at a first-order approximation around the stationary equilibrium:

log
(
πWt
π̄W

)
= βEt log

(
πWt+1

π̄W

)
+ κw

(
mcwt − 1

µWt

)
, (11)

with πWt :=
WF
t

WF
t−1

=
wFt
wFt−1

πYt being wage inflation, wt and wFt being the respective real wages

for households and firms, mcwt = wt
wFt

is the actual and 1
µWt

= ζt−1
ζt

being the target mark-
down of wages the unions pay to households, Wt, relative to the wages charged to firms,
W F
t and κw = (1−λw)(1−λwβ)

λw
. This target fluctuates in response to markup shocks, εµWt ,

and follows a log AR(1) process.15 In our baseline, profits paid to households therefore are
ΠU
t = (wFt − wt)Nt.

2.2.2 Final goods producers

Similar to unions, final goods producers differentiate a homogeneous intermediate good and
set prices. They face a downward-sloping demand curve

yjt = (pjt/Pt)
−ηt Yt

for each good j and buy the intermediate good at the nominal price MCt. As we do for
unions, we assume price adjustment frictions à la Calvo (1983) with indexation.

Under this assumption, the firms’ managers maximize the present value of real profits
15Including the first-order irrelevant terms, the Phillips curve reads

log
(
πWt
π̄W

)
= βEt

[
log
(
πWt+1

π̄W

)
1−τt+1

1−τt
ζt+1

ζt

WF
t+1Pt

WF
t Pt+1

Nt+1

Nt

]
+ κw

(
wt
wFt
− 1

µWt

)
,

where τt is the average income tax.
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given this price adjustment friction, i.e., they maximize:

E0

∞∑
t=0

βtλtY (1− τLt )Y
1−τPt
t

{(
pjtπ̄

t
Y

Pt
− MCt

Pt

)(
pjtπ̄

t

Pt

)−ηt}1−τPt

, (12)

with a time-constant discount factor.
The corresponding first-order condition for price setting implies a Phillips curve

log
(πt
π̄

)
= βEt log

(πt+1

π̄

)
+ κY

(
mct − 1

µYt

)
, (13)

where we again dropped all terms irrelevant for a first-order approximation and have κY =
(1−λY )(1−λY β)

λY
. Here, πt is the gross inflation rate of final goods, πt := Pt

Pt−1
, mct := MCt

Pt
is the

real marginal costs, π̄ is steady-state inflation, and µYt = ηt
ηt−1

is the target markup. As for
the unions, this target fluctuates in response to markup shocks, εµY , and follows a log AR(1)
process. In our baseline, profits paid to households therefore are ΠF

t = (1−mct)Yt.16

2.2.3 Intermediate goods producers

Intermediate goods are produced with a constant returns to scale production function:

Yt = ZtN
α
t (utKt)

(1−α),

where Zt is total factor productivity and follows an autoregressive process in logs, and utKt

is the effective capital stock taking into account utilization ut, i.e., the intensity with which
the existing capital stock is used. Using capital with an intensity higher than normal results
in increased depreciation of capital according to δ (ut) = δ0 + δ1 (ut − 1) + δ2/2 (ut − 1)2,
which, assuming δ1, δ2 > 0, is an increasing and convex function of utilization. Without loss
of generality, capital utilization in the steady state is normalized to 1, so that δ0 denotes the
steady-state depreciation rate of capital goods.

Let mct be the relative price at which the intermediate good is sold to final goods pro-
ducers. The intermediate goods producer maximizes profits,

mctZtYt − wFt Nt − [rt + qtδ(ut)]Kt,

where rFt and qt are the rental rate of firms and the (producer) price of capital goods re-
16In an extension, we allow for smoothed payments of profits. Here, firms retain a fraction 1− ωF of their

period profits to buy bonds and pay out to entrepreneurs a fraction ωF of retained earnings. Also, unions
then retain a fraction 1 − ωU of their period profits to buy bonds and pay out to workers a fraction ωU of
retained earnings.
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spectively. The intermediate goods producer operates in perfectly competitive markets, such
that the real wage and the user costs of capital are given by the marginal products of labor
and effective capital:

wFt = αmctZt

(
utKt

Nt

)1−α

, (14)

rt + qtδ(ut) = ut(1− α)mctZt

(
Nt

utKt

)α
. (15)

We assume that utilization is decided by the owners of the capital goods, taking the
aggregate supply of capital services as given. The optimality condition for utilization is given
by

qt [δ1 + δ2(ut − 1)] = (1− α)mctZt

(
Nt

utKt

)α
, (16)

i.e., capital owners increase utilization until the marginal maintenance costs equal the marginal
product of capital services.

2.2.4 Capital goods producers

Capital goods producers take the relative price of capital goods, qt, as given in deciding about
their output, i.e., they maximize

E0

∞∑
t=0

βtIt

{
Ψtqt

[
1− φ

2

(
log

It
It−1

)2
]
− 1

}
, (17)

where Ψt governs the marginal efficiency of investment à la Justiniano et al. (2011), which
follows an AR(1) process in logs and is subject to shocks εΨt .17

Optimality of the capital goods production requires (again dropping all terms irrelevant
up to first order)

Ψtqt

[
1− φ log

It
It−1

]
= 1− βEt

[
Ψt+1qt+1φ log

(
It+1

It

)]
, (18)

and each capital goods producer will adjust its production until (18) is fulfilled.
Since all capital goods producers are symmetric, we obtain as the law of motion for

17This shock has to be distinguished from a shock to the relative price of investment, which has been shown
in the literature (Justiniano et al., 2011; Schmitt-Grohé and Uribe, 2012) to not be an important driver of
business cycles as soon as one includes the relative price of investment as an observable. We therefore focus
on the MEI shock.
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aggregate capital

Kt − (1− δ(ut))Kt−1 = Ψt

[
1− φ

2

(
log

It
It−1

)2
]
It . (19)

The functional form assumption implies that investment adjustment costs are minimized and
equal to 0 in the steady state.

2.3 Government

The government operates a monetary and a fiscal authority. The monetary authority controls
the nominal interest rate on liquid assets, while the fiscal authority issues government bonds
to finance deficits, chooses both the average tax rate in the economy and the tax progressivity,
and makes expenditures.

We assume that monetary policy sets the nominal interest rate following a Taylor-type
(1993) rule with interest rate smoothing:

Rb
t+1

R̄b
=

(
Rb
t

R̄b

)ρR (πt
π̄

)(1−ρR)θπ
(
Yt
Y ∗t

)(1−ρR)θY

εRt . (20)

The coefficient R̄b ≥ 0 determines the nominal interest rate in the steady state. The coeffi-
cients θπ, θY ≥ 0 govern the extent to which the central bank attempts to stabilize inflation
and the output gap, where the gap, Yt

Y ∗t
, is defined relative to what output would be at

stationary equilibrium markups, Y ∗t . ρR ≥ 0 captures interest rate smoothing.
We assume that government debt evolves according to the following rule (c.f. Woodford,

1995):

Bt+1

Bt

=

(
Bt

B̄

)−γB (πt
π̄

)γπ ( Yt
Y ∗t

)γY
Dt , Dt = DρD

t−1ε
D
t , (21)

where Dt is a persistent shock to the government’s structural deficit. Besides issuing bonds,
the government uses tax revenues Tt, defined below, to finance government consumption, Gt,
and interest on debt. The parameters γB, γπ, and γY measure, respectively, how the deficit
reacts to outstanding debt, inflation, and the output gap.

The government sets the average tax rate in the economy according to a similar rule

τt
τ̄

=
(τt−1

τ̄

)ρτ (Bt

B̄

)(1−ρτ )γτB
(
Yt
Y ∗t

)(1−ρτ )γτY

. (22)

The level parameter of the tax code τLt adjusts such that the average tax rate on income
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equals this target level:

τt =
Et
(
wtnithit + Ihit=0ΠF

t

)
− τLt Et

(
wtnithit + Ihit=0ΠF

t

)τPt
Et (wtnithit + Ihit=0ΠF

t )
, (23)

where Et is the expectation operator, which here gives the cross-sectional average, and τPt is
constant in the baseline.18 Total government tax revenues Tt are then

Tt = τt
(
wtnithit + Ihit 6=0ΠU

t + Ihit=0ΠF
t

)
and the government budget constraint determines government spending residually: Gt =

Bt+1 + Tt −Rb
t/πtBt.

There are thus two shocks to government rules: monetary policy shocks, εRt , and structural
deficit shocks, εDt . We assume these shocks to be log normally distributed with mean zero.

2.4 Goods, bonds, capital, and labor market clearing

The labor market clears at the competitive wage given in (14). The bond market clears
whenever the following equation holds:

Bt+1 = Bd(Rb
t , At, rt, qt,Π

F
t ,Π

U
t , wt, πt, τt, τ

P
t , τ

L
t ,Θt,Wt+1) := Et

[
λb∗a,t + (1− λ)b∗n,t

]
, (24)

where b∗a,t, b∗n,t are functions of the states (b, k, h), and depend on how households value
asset holdings in the future, Wt+1(b, k, h), and the current set of prices (and tax rates)
(Rb

t , At, rt, qt,Π
F
t ,Π

U
t , wt, πt, τt, τ

P
t , τ

L
t ). Future prices do not show up because we can express

the value functions such that they summarize all relevant information on the expected future
price paths. Expectations in the right-hand-side expression are taken w.r.t. the distribution
Θt(b, k, h). Equilibrium requires the total net amount of bonds the household sector demands,
Bd, to equal the supply of government bonds. In gross terms there are more liquid assets in

18In an extension, the parameter τPt that governs the progressivity of the tax schedule evolves according
to

τPt
τ̄P

=

(
τPt−1

τ̄P

)ρP
εPt , (21a)

where εPt are shocks to tax progressivity.
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circulation as some households borrow up to B.19

Last, the market for capital has to clear:

Kt+1 = Kd(Rb
t , At, rt, qt,Π

F
t ,Π

U
t , wt, πt, τt, , τ

P
t , τ

L
t ,Θt,Wt+1) := Et[λkt∗ + (1− λ)k] , (25)

where the first equation stems from competition in the production of capital goods, and
the second equation defines the aggregate supply of funds from households—both those that
trade capital, λk∗t , and those that do not, (1 − λ)k. Again k∗t is a function of the current
prices and continuation values. The goods market then clears due to Walras’ law, whenever
labor, bonds, and capital markets clear.

2.5 Equilibrium

A sequential equilibrium with recursive planning in our model is a sequence of policy functions
{x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t }, a sequence of value functions {V a

t , V
n
t }, a sequence of prices {wt, wFt ,

ΠF
t ,Π

U
t , qt, rt, R

b
t , πt, π

W
t , τt, τ

P
t , τ

L
t }, a sequence of stochastic states At, Zt,Ψt, µt, µW t, Dt and

shocks εAt , εZt , εΨt , ε
µY
t , εµWt , εDt , ε

R
t , aggregate capital and labor supplies {Kt, Nt}, distributions

Θt over individual asset holdings and productivity, and expectations Γ for the distribution
of future prices, such that

1. Given the functionals EtWt+1 for the continuation value and period-t prices, policy
functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } solve the households’ planning problem; and given the
policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } and prices, the value functions {V a

t , V
n
t } are a

solution to the Bellman equation (8).

2. Distributions of wealth and income evolve according to households’ policy functions.

3. The labor, the final goods, the bond, the capital, and the intermediate goods markets
clear in every period, interest rates on bonds are set according to the central bank’s

19In the extension with retained earnings, see Footnote 16, the bond market clearing condition reads:

Bt+1 = Bd +BUt+1 +BFt+1

BUt+1 = (1− ωU )

(
BUt

Rbt
πt

+ (m̄cw −mcwt )wtNt

)
BFt+1 = (1− ωF )

(
BFt

Rbt
πt

+ (m̄c−mct)Yt
)
,

(24a)

where BU,F is demand for bonds from unions and firms. This amounts to payments to workers
of ΠU

t = ωU
(
BUt

Rbt
πt

+ (1−mcwt )wtNt

)
+ (1 − ωU )(1 − m̄cw)wtNt and to entrepreneurs of ΠF

t =

ωF
(
BFt

Rbt
πt

+ (1−mct)Yt
)

+ (1− ωF )(1− m̄c)Yt.
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Taylor rule, fiscal policies are set according to the fiscal rules, and stochastic processes
evolve according to their law of motion.

4. Expectations are model consistent.

2.6 Numerical solution and estimation technique

We solve the model by perturbation methods. We choose a first-order Taylor expansion
around the stationary equilibrium following the method of Bayer and Luetticke (2020). This
method replaces the value functions with linear interpolants and the distribution function
with histograms to calculate a stationary equilibrium. Then it performs dimensionality re-
duction before linearization but after calculation of the stationary equilibrium. The dimen-
sionality reduction is achieved by first writing the distribution of assets and income in terms
of its copula and marginals, then representing the value functions and copula by their dis-
crete cosine transformations (DCT) and finally perturbing only the largest coefficients of
these transformations together with the marginal distributions of asset holdings and income.
We solve the model originally on a grid of 80x80x22 points for liquid assets, illiquid assets,
and income, respectively. The dimensionality-reduced number of states and controls in our
baseline system is 929.

Approximating the sequential equilibrium in a linear state-space representation then boils
down to the linearized solution of a non-linear difference equation

EtF (xt, Xt, xt+1, Xt+1, σΣεt+1), (26)

where xt is “idiosyncratic” states and controls: the value and distribution functions, and Xt

is aggregate states and controls: prices, quantities, productivities, etc. The error term εt

represents fundamental shocks. Importantly, we can also order the equations in a similar
way. The law of motion for the distribution and the Bellman equations describe a non-
linear difference equation for the idiosyncratic variables, and all other optimality and market
clearing conditions describe a non-linear difference equation for the aggregate variables. By
introducing auxiliary variables that capture the mean of b, k, and h, we make sure that the
distribution itself does not directly show up in any aggregate equation other than in the one
for the summary variables. Yet, these equations are free of all model parameters.

This helps substantially in estimating the model. For each parameter draw, we need to
calculate the Jacobian of F and then use the Klein algorithm (2000) (see also Schmitt-Grohé
and Uribe, 2004) to obtain a linear state-space representation, which we then feed into a
Kalman filter to obtain the likelihood of the data given our model. However, most model
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parameters do not show up in the Bellman equation. Only ρh, σ̄h, λ, β, γ, and ξ do, but
we do not estimate these parameters but calibrate them from the stationary equilibrium.20

Therefore, the Jacobian of the “idiosyncratic equations” is unaltered by all parameters that
we estimate and we only need to calculate it once. Similarly, “idiosyncratic variables” (i.e.,
the value functions and the histograms) only affect the aggregate equations through their
parameter-free effect on summary variables, such that this part of the Jacobian also does
not need to be updated during the estimation.21 This leaves us with the same number of
derivatives to be calculated for every parameter draw during the estimation as in a repre-
sentative agent model.22 Still, solving for the state-space representation and evaluating the
likelihood are substantially more time consuming, and computing the likelihood of a given
parameter draw takes roughly 5 seconds on a workstation computer; 90% of the computing
time goes into the Schur decomposition, which is still much larger because of the many addi-
tional “idiosyncratic” states (histograms) and controls (marginal value functions) the system
contains.

We use a Bayesian likelihood approach as described in An and Schorfheide (2007) and
Fernández-Villaverde (2010) for parameter estimation. In particular, we use the Kalman
filter to obtain the likelihood from the state-space representation of the model solution and
employ a standard random walk Metropolis-Hastings (RWMH) algorithm to generate draws
from the posterior likelihood. Smoothed estimates of the states at the posterior mean of
the parameters are obtained via a Kalman smoother of the type described in Koopman and
Durbin (2000) and Durbin and Koopman (2012).

3 Model variants and parameterization

We estimate a number of model variants using a two-step procedure. First, we calibrate or
fix all parameters that affect the steady state of the model, which is the same for all model
variants (see Table 1). Second, we estimate by full-information methods all parameters that
only matter for the dynamics of the model, i.e., the aggregate shocks and frictions. Table 2
summarizes the calibrated and externally chosen parameters, Table 3 shows the calibration
targets, and Table 4 lists the estimated parameters. One period in the model refers to a
quarter of a year.

20Note that the scaling of idiosyncratic risk, st, shows up in the Bellman equation, but similar to a price
and not as a parameter.

21Note that this does not stop the underlying heterogeneity from influencing the estimation. The counter-
parts in a representative agent framework are the consumption Euler and the capital accumulation equations,
which do not change in the estimated parameters; but of course that does not imply that they are unimportant
for the estimation.

22Auclert et al. (2019) exploit a similar fact for estimation based on the sequence-space representation of
a HANK model.
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3.1 Model variants

Table 1: Model variants

Shocks
Data Aggregate +Cross-sectional

Aggregate HANK
RANK HANKX

+Cross-sectional HANKX+

Table 1 gives an overview of the model variants that we estimate. The most basic model
variant with complete markets and representative household (RANK) naturally is estimated
on aggregate data only. As in Smets and Wouters (2007), we allow for aggregate shocks to
TFP and investment-specific technology, to price and wage markups, to the risk premium
and monetary policy, and to deficits.

Next, we add incomplete markets and portfolio choices to the model (HANK) and estimate
this variant on the same data and the same sources of fluctuations. Beyond understanding the
impact of incomplete markets on the business cycle, we use this model to obtain out-of-sample
predictions for inequality. The third model we estimate adds cross-sectional information to
the estimation sample but keeps the same sources of fluctuations (HANKX). We use this
variant as an over-identification test, asking whether there is a tension between aggregate
and cross-sectional information given the model.

Finally, we extend the shocks and allow for time variation in income risk and tax pro-
gressivity that directly affect the cross-section (HANKX+). To discipline the two processes
we include additional data on income risk and tax progressivity. This variant also allows for
retained earnings by unions and firms.23

3.2 Calibrated parameters

We fix a number of parameters either following the literature or targeting steady-state ratios;
see Table 2 (all at quarterly frequency of the model).24 For the household side, we set the
relative risk aversion, ξ, to 4, which is common in the incomplete markets literature; see
Kaplan and Violante (2014).25 We set the Frisch elasticity to 0.5; see Chetty et al. (2011).

23See Footnotes 8, 12, 18, and 19 for the adjustments to the baseline model.
24Appendix B provides the table of steady-state parameters for the representative agent analogue of our

model.
25We also estimate our model with a relative risk aversion of 2, see Appendix F.1.
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Table 2: External/calibrated parameters (quarterly frequency)

Parameter Value Description Target

Households
β 0.984 Discount factor see Table 3
ξ 4.00 Relative risk aversion Kaplan and Violante (2014)
γ 2.00 Inverse of Frisch elasticity Chetty et al. (2011)
λ 10.00% Portfolio adj. prob. see Table 3
ρh 0.98 Persistence labor income Storesletten et al. (2004)
σh 0.12 STD labor income Storesletten et al. (2004)
ζ 0.02% Trans. prob. from W. to E. see Table 3
ι 6.25% Trans. prob. from E. to W. Guvenen et al. (2014)
R̄ 1.71% Borrowing penalty see Table 3
Firms
α 0.68 Share of labor 62% labor income
δ0 1.75% Depreciation rate 7.0% p.a.
η̄ 11 Elasticity of substitution Price markup 10%
ζ̄ 11 Elasticity of substitution Wage markup 10%
Government
τ̄L 0.175 Tax rate level G/Y = 20%
τ̄P 0.12 Tax progressivity see text
R̄b 1.00 Nominal rate see text
π̄ 1.00 Inflation see text

We take estimates for idiosyncratic income risk from Storesletten et al. (2004), ρh = 0.98 and
σ̄h = 0.12. Guvenen et al. (2014) provide the probability that a household will fall out of the
top 1% of the income distribution in a given year, which we take as the transition probability
from entrepreneur to worker, ι = 6.25%.

Table 3 summarizes the targeted moments. We match four targets: 1) average illiquid
assets (K/Y=11.44), 2) average liquidity (B/Y=1.72), 3) the fraction of borrowers, 16%, and
4) the average top 10% share of wealth, which is 67%. This yields a discount factor of 0.984,
a portfolio adjustment probability of 10%, a borrowing penalty of 1.71% quarterly (given a
borrowing limit of two times average quarterly income), and a transition probability from
worker to entrepreneur of 0.02%.26

For the firm side, we set the labor share in production, α, to 68% to match a labor income
share of 62%, which corresponds to the average BLS labor share measure over 1954-2019. The
depreciation rate is 1.75% per quarter. An elasticity of substitution between differentiated
goods of 11 yields a markup of 10%. The elasticity of substitution between labor varieties is
also set to 11, yielding a wage markup of 10%. All are standard values in the literature.

The government taxes labor and profit income using a non-linear tax schedule that approx-
26Detailed data sources can be found in Appendix A.
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Table 3: Targeted moments

Targets Model Data Source Parameter

Mean illiquid assets (K/Y) 11.44 11.44 NIPA Discount factor
Mean liquidity (B/Y) 1.72 1.72 FRED Portfolio adj. probability
Top10 wealth share 0.67 0.67 WID Fraction of entrepreneurs
Fraction borrowers 0.16 0.16 SCF Borrowing penalty

imates the progressivity of the US tax system; see Heathcote et al. (2017). The progressivity
parameter, τP = 0.12, corresponds to the average value over 1954 – 2017. We follow Ferriere
and Navarro (2018) in constructing a direct estimate for tax progressivity and extend their
tax progressivity estimate until 2017. The level of taxes, τL, is set to clear the government
budget constraint that corresponds to a government share of G/Y = 20%. We set steady-
state inflation to zero as we have assumed indexation to the steady-state inflation rate in
the Phillips curves. We set the steady-state net interest rate on bonds to 0.0%, in order to
capture the average federal funds rate in real terms minus output growth over 1954 – 2019.

3.3 Estimation data

We use quarterly US data from 1954Q3 to 2019Q4 and include the following eight observable
time series in the baseline: the growth rates of per capita GDP, private consumption, invest-
ment, and wages, all in real terms; the logarithm of the level of per capita hours worked;
the log difference of the GDP deflator; and the (shadow) federal funds rate. Our model is
stationary so all growth rates are demeaned; see Appendix A.2 for a formal depiction of the
vector of observables.

In the two extensions HANKX and HANKX+, we add more data with shorter and/or
non-quarterly availability. First, we use cross-sectional information, wealth and income shares
of the top 10% at an annual frequency, available from 1954 to 2019 from the World Inequality
Database27, but keep the set of parameters to be estimated unchanged (HANKX). The rea-
son we focus on the top 10% wealth and income share is that this measure is most consistent
across alternative, but less frequently available, data sources such as the Survey of Consumer
Finances (SCF); see Kopczuk (2015).28 Second, we allow for shocks to income risk and tax

27This database draws on work by Piketty, Saez, and Zucman; see, e.g., Piketty and Saez (2003) or Saez
and Zucman (2016)

28We abstain from including other cross-sectional data in the estimation, such as the Panel Study of Income
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progressivity (HANKX+). To identify these, we use a direct estimate for tax progressivity,
extending the annual data series of Ferriere and Navarro (2018) based on Mertens and Mon-
tiel Olea (2018)’s measure of average marginal tax rates to 2017, see Appendix A.2. For
income risk, we use estimates of the variance of idiosyncratic income, available at a quarterly
frequency from 1983Q1 to 2013Q1, from Bayer et al. (2019) based on panel data in the Survey
of Income and Program Participation (SIPP) .

3.4 Prior distributions

Columns 1-4 of Table 4 present the parameters we estimate and their assumed prior distri-
butions. The posterior distribution is discussed in the next section. Where available, we use
prior values that are standard in the literature and independent of the underlying data.

Following Justiniano et al. (2011), we impose a gamma distribution with prior mean of 5.0
and standard deviation of 2.0 for δ2/δ1, the elasticity of marginal depreciation with respect
to capacity utilization, and a gamma prior with mean 4.0 and standard deviation of 2.0 for
the parameter controlling investment adjustment costs, φ. For the slopes of price and wage
Phillips curves, κY and κw, we assume gamma priors with mean 0.1 and standard deviation
0.01, which corresponds to price and wage contracts having an average length of one year.
Following Smets and Wouters (2007), the autoregressive parameters of the shock processes
are assumed to follow a beta distribution with mean 0.5 and standard deviation 0.2. The
standard deviations of the shocks follow inverse-gamma distributions with prior mean 0.1%
and standard deviation 2%.29

Regarding policy, for the inflation and output feedback parameters in the Taylor rule, θπ
and θY , we impose normal distributions with prior means of 1.7 and 0.13, respectively, while
the interest rate smoothing parameter ρR has the same prior distribution as the persistence
parameters of the shock processes. In the bond rule, the debt-feedback parameter γB is
assumed to follow a gamma distribution with mean 0.10 such that the prior for the auto-
correlation of debt is centered around 0.9 and standard deviation 0.08, implying a half-life
of a deviation in debt of between one and eight years. The parameters governing feedback
to inflation and output, γπ and γY , follow standard normal distributions. Similarly, the au-
toregressive parameters, in the tax rules, ρi where i ∈ {P, τ}, are assumed to follow beta
distributions (with mean 0.5 and standard deviation 0.2), while the feedback parameters, γτY
and γτB, follow standard normal distributions.

Dynamics (PSID) or the Survey of Consumer Finances (SCF) to avoid dealing with two measurements of the
same model variable.

29In the HANKX+ extension, we use a higher prior mean for income risk shocks, s, given the evidence in
Bayer et al. (2019).

23



In the HANKX+ extension, we allow for retained earnings and take as prior for the
payment to workers or entrepreneurs, ωU,F , a uniform distribution between 0 and 1.

In our baseline we do not include measurement errors, but allow for these when including
estimates of top income and wealth shares or tax progressivity and income risk as additional
data.

Table 4: Prior and posterior distributions of estimated parameters

Parameter Prior Posterior

Distribution Mean Std. Dev. RANK HANK HANKX HANKX+

Frictions

δs Gamma 5.00 2.00 1.929 1.226 1.274 1.289
(1.450, 2.519) (1.006, 1.468) (1.061, 1.508) (1.085, 1.511)

φ Gamma 4.00 2.00 1.267 0.164 0.166 0.163
(0.738, 2.160) (0.119, 0.215) (0.122, 0.218) (0.120, 0.212)

κ Gamma 0.10 0.01 0.083 0.097 0.097 0.097
(0.069, 0.097) (0.083, 0.112) (0.083, 0.112) (0.083, 0.112)

κw Gamma 0.10 0.01 0.085 0.110 0.108 0.101
(0.069, 0.103) (0.092, 0.128) (0.092, 0.125) (0.085, 0.118)

Debt and monetary policy rules

ρR Beta 0.50 0.20 0.818 0.788 0.791 0.799
(0.792, 0.843) (0.758, 0.816) (0.761, 0.820) (0.770, 0.827)

σR Inv.-Gamma 0.10 2.00 0.226 0.257 0.258 0.256
(0.208, 0.245) (0.233, 0.283) (0.234, 0.284) (0.234, 0.282)

θπ Normal 1.70 0.30 2.106 2.457 2.493 2.525
(1.906, 2.327) (2.230, 2.708) (2.259, 2.751) (2.293, 2.779)

θY Normal 0.13 0.05 0.176 0.115 0.111 0.091
(0.145, 0.209) (0.087, 0.145) (0.084, 0.139) (0.063, 0.119)

γB Gamma 0.10 0.08 0.442 0.294 0.297 0.148
(0.332, 0.557) (0.204, 0.399) (0.223, 0.384) (0.111, 0.190)

γπ Normal 0.00 1.00 -1.054 -1.078 -1.14 -1.147
(-1.187, -0.922) (-1.216, -0.945) (-1.277, -1.005) (-1.277, -1.021)

γY Normal 0.00 1.00 -0.852 -0.877 -0.834 -1.118
(-0.955, -0.759) (-0.992, -0.773) (-0.942, -0.738) (-1.262, -0.99)

ρD Beta 0.50 0.20 0.988 0.994 0.992 0.989
(0.978, 0.995) (0.987, 0.998) (0.983, 0.998) (0.979, 0.996)

σD Inv.-Gamma 0.10 2.00 0.242 0.291 0.308 0.287
(0.203, 0.281) (0.263, 0.323) (0.278, 0.341) (0.260, 0.317)

Tax rules

ρτ Beta 0.50 0.20 0.294 0.401 0.405 0.481
(0.123, 0.462) (0.228, 0.551) (0.246, 0.548) (0.361, 0.598)

γτB Normal 0.00 1.00 1.883 1.454 1.374 0.648
(1.454, 2.365) (1.085, 1.884) (1.052, 1.750) (0.498, 0.823)

γτY Normal 0.00 1.00 1.329 2.842 2.631 3.971
(0.453, 2.259) (1.915, 3.810) (1.885, 3.443) (3.237, 4.751)

ρP Beta 0.50 0.20 – – – 0.971
(0.950, 0.988)

σP Inv.-Gamma 0.10 2.00 – – – 3.720
(3.140, 4.407)
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Table 4: Prior and posterior distributions of estimated parameters - continued

Parameter Prior Posterior

Distribution Mean Std. Dev. RANK HANK HANKX HANKX+

Structural shocks

ρA Beta 0.50 0.20 0.903 0.943 0.967 0.981
(0.879, 0.926) (0.911, 0.973) (0.935, 0.991) (0.965, 0.994)

σA Inv.-Gamma 0.10 2.00 0.245 0.199 0.180 0.143
(0.211, 0.281) (0.169, 0.230) (0.152, 0.212) (0.125, 0.164)

ρZ Beta 0.50 0.20 0.996 0.997 0.995 0.995
(0.994, 0.998) (0.994, 0.999) (0.991, 0.998) (0.991, 0.998)

σZ Inv.-Gamma 0.10 2.00 0.521 0.582 0.591 0.601
(0.481, 0.563) (0.540, 0.627) (0.549, 0.636) (0.559, 0.647)

ρΨ Beta 0.50 0.20 0.883 0.969 0.967 0.969
(0.825, 0.928) (0.953, 0.983) (0.954, 0.978) (0.956, 0.980)

σΨ Inv.-Gamma 0.10 2.00 5.246 2.158 2.171 2.004
(4.338, 6.671) (1.864, 2.484) (1.895, 2.479) (1.753, 2.278)

ρµ Beta 0.50 0.20 0.915 0.899 0.902 0.898
(0.876, 0.952) (0.865, 0.929) (0.867, 0.934) (0.864, 0.929)

σµ Inv.-Gamma 0.10 2.00 1.567 1.660 1.637 1.732
(1.380, 1.785) (1.487, 1.858) (1.467, 1.832) (1.546, 1.939)

ρµw Beta 0.50 0.20 0.691 0.859 0.852 0.856
(0.624, 0.752) (0.814, 0.900) (0.810, 0.890) (0.814, 0.894)

σµw Inv.-Gamma 0.10 2.00 8.640 5.930 6.085 6.968
(7.010, 10.604) (5.071, 6.939) (5.256, 7.045) (6.012, 8.063)

Income risk process

ρs Beta 0.50 0.20 – – – 0.681
(0.618, 0.736)

σs Inv.-Gamma 1.00 2.00 – – – 68.826
(61.173, 77.392)

ΣY Normal 0.00 100.00 – – – 21.663
(21.651, 21.674)

Retained earnings processes

ωF Uniform 0.50 0.29 – – – 0.115
(0.074, 0.174)

ωU Uniform 0.50 0.29 – – – 0.153
(0.126, 0.187)

Measurement errors

σmeW10 Inv.-Gamma 0.05 0.01 – – 2.217 1.843
(1.902, 2.577) (1.552, 2.175)

σmeI10 Inv.-Gamma 0.05 0.01 – – 6.243 3.647
(5.405, 7.219) (2.879, 4.580)

σmeτP Inv.-Gamma 0.05 0.01 – – – 0.042
(0.012, 0.110)

σmes Inv.-Gamma 0.05 0.01 – – – 5.045
(3.604, 7.002)

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages
by multiplying by 100. HANK and HANKX denote posterior estimates for the model without and with
observable inequality series, respectively. HANKX+ additionally includes retained earnings, and shocks to
income risk and tax progressivity and their observables.
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4 US business cycles

One key advantage of HANK models is that we can use them to understand the distributional
consequences of business cycle shocks and policies. This raises three questions. First, to
what extent does the inclusion of incomplete markets change our view of the business cycle
compared to a representative-agent model? Second, can the model simultaneously account
for inequality and business cycle dynamics or does the model need to make compromises on
the one to accommodate the other? Third, which business cycle shocks and policies are the
most important drivers of inequality dynamics?

In this section, we answer the first two questions by comparing parameter estimates, vari-
ance decompositions, and historical decompositions of US business cycles for the estimated
HANK model without (HANK) and with (HANKX) data on inequality and compare them
to the otherwise equivalent representative-agent model (RANK) – with all three models be-
ing subject to aggregate shocks only. In Section 5, we dig deeper into the details of how
the business cycle drives US inequality and add shocks to income risk and tax progressivity
(using the HANKX+ model), giving an answer to the third question.

4.1 Estimation results

Table 4, columns 5-7, reports the posterior distributions across the three estimation variants:
RANK, HANK, and HANKX. Checks on the convergence of the estimator are provided in
Appendix C.30 The parameter estimates are broadly in line with the RANK estimates (our
priors are taken from this literature) and typically of the same order of magnitude, but
there are notable differences. These differences reflect the fact that the HANK model under
the RANK parameterization yields significantly different aggregate dynamics (see Appendix
D.1), but the models need to fit the same data.

In particular, the estimated frictions in RANK are larger. The RANK model estimates
larger investment adjustment costs and costs of capacity utilization. In part this reflects
the portfolio adjustment costs at the household level that generate inertia in aggregate in-
vestment. Our estimates for nominal frictions for the HANK model imply price and wage
adjustments roughly every four quarters on average. For the RANK model the implied
average time between adjustments is slightly longer. In terms of shocks, the estimated per-
sistence and variance for the seven “standard” shocks are comparable to the results of Smets

30The estimation is conducted with five parallel RWMH chains starting from an over-dispersed target
distribution after an extensive mode search. After burn-in, 250,000 draws from the posterior are used to
compute the posterior statistics. The acceptance rates across chains are between 20% and 30%. Appendix
C provides Gelman and Rubin (1992) and Geweke (1992) convergence statistics as well as traceplots of
individual parameters.
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Figure 1: US inequality – data vs. model

(a) Top 10% income share (b) Top 10% wealth share

Notes: Data (crosses) correspond to log-deviations of the annual observations of the share of
pre-tax income and wealth held by the top 10% in each distribution in the US taken from
the World Inequality Database. HANK (dashed) corresponds to the smoothed states of both
implied by the estimated model w/o inequality data, HANKX (dash-dotted) with inequality
data, and HANKX+ (solid) with inequality data, shocks to income risk and tax progressivity
(plus their observables), as well as retained earnings. Shaded areas correspond to NBER-dated
recessions.

and Wouters (2007). The persistence estimates under the HANK specification range from
0.997 for TFP to 0.859 for wage markups. The variance ranges from 0.2% for risk-premium
shocks to 5.9% for wage-markup shocks. In terms of policy rules, we also obtain comparable
results. The Taylor rule coefficients on inflation and output deviations are 2.5 and 0.1, and
there is substantial inertia with a coefficient of 0.8 for interest smoothing. The fiscal rule
that governs deficits and hence government spending exhibits a countercyclical response to
inflation and output deviations, −1.1 and −0.9, and features persistence as well. The tax
rule that governs average taxation has similar properties. Average tax rates rise when output
or debt is high, but tax level changes do not have a strong persistence beyond the persistence
of output and debt.

Figure 1 plots the top 10% income and wealth shares in the US data and for all HANK
variants based on the Kalman smoother. Strikingly, even when estimated only on aggregate
data, the business cycle shocks and frictions lead the HANK model to reproduce the observed
U-shaped evolution of inequality from 1954 to 2019. Since our baseline estimation (HANK)
does not use any cross-sectional information, the good fit of the cross-sectional data can be
informally thought of as passing an over-identification test. In turn, adding data on inequal-
ity has little effect on the estimated parameters (HANKX). In other words, the estimated

27



Figure 2: Variance decompositions: Output and consumption growth
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Notes: Conditional variance decompositions at a 4-quarter forecast horizon for the estimated
1) RANK model, 2) HANK model without inequality data, and 3) the HANK model with
inequality data (HANKX).

business cycle shocks and frictions in combination with incomplete markets do a good job of
matching the evolution of wealth and income inequality over the last 65 years. Hence, the
HANK model is able to match both inequality and business cycle dynamics without needing
to compromise on one or the other. Adding retained earnings and fluctuations in income
risk and tax progressivity as well as the corresponding data for the latter two (HANKX+)
further increases the fit with the inequality data. We will explore the inequality results in
detail in Section 5.

4.2 Variance decompositions

Next, we show what the estimated parameters imply for our view of US business cycles
by looking at variance decompositions at business cycle frequency.31 Figure 2 shows the
decompositions of the growth rates of output and consumption.

As in the representative agent literature (see, e.g., Smets and Wouters, 2007; Justini-
ano et al., 2011), TFP and investment-specific technology shocks are the most important
drivers of output growth, each explaining roughly 25% of its conditional variance at business
cycle frequency. Compared to the RANK model, the HANK model puts less emphasis on

31We report the conditional variances at four quarters.
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investment-specific technology shocks and more emphasis on shocks to the risk-premium,
monetary policy, and markups. The HANK model implies additional cross-equation restric-
tions that matter in particular for the investment-specific technology shock.

A negative investment technology shock makes the production of investment goods less
efficient, it discourages investment and thereby leads to an output decline. This is true in
both HANK and RANK models. As the price of investment goods goes up after a negative
investment technology shock, there is an additional effect in our HANK model: the price
increase of capital has a positive wealth effect, which stabilizes consumption and therefore
investment technology shocks contribute positively to consumption through the lens of the
HANK model. This feature reduces the co-movement of investment and consumption in
the short run; see also the impulse response functions to investment technology shocks in
Appendix D.3. In models in which households do not directly hold capital this mechanism
is muted.32

Looking at the decomposition of consumption growth, the HANK model again implies a
larger role of risk-premium and monetary shocks at the expense of the importance of TFP
shocks. The smaller role of TFP shocks reflects the fact that households under incomplete
markets do not initially respond in their consumption one-for-one to a permanent increase
in income; see Blundell et al. (2008). Since we estimate TFP shocks to be fairly persistent,
this effect is important. The fact that we find monetary shocks to be more important for
consumption is in line with Kaplan et al. (2018) and Luetticke (2020). In the next section, we
revisit this question with income risk shocks and find that they partly replace risk-premium
shocks.

Consistent with estimating very similar shocks and frictions, as discussed before, we find
close to identical variance decompositions for the estimations across both HANK variants
with and without inequality data (HANK vs. HANKX).

4.3 Historical decompositions

While the variance decompositions help us understand the average business cycle implied by
the model, a historical decomposition tells us how the model views the actual cycles that the
US economy has gone through. We summarize the historical decomposition of NBER-dated
recessions in Table 5. We report historical decompositions for all observables in Appendix
E. Again, we find that all model variants paint overall similar pictures of US recessions.
Having said this, the difference in variance decompositions that we documented before for

32This partly explains the difference with Auclert et al. (2020), who find that investment-specific technology
shocks are important in their HANK model with a mutual fund that holds all assets, instead of our two-asset
structure that increases the role of the wealth effect of higher capital prices.
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Table 5: Contribution of shocks to US recessions

Output growth Consumption growth

Shocks RANK HANK HANKX RANK HANK HANKX

TFP, εZ -0.19 -0.23 -0.27 -0.24 -0.16 -0.19
Inv.-spec. tech., εΨ -0.51 -0.30 -0.27 -0.19 0.07 0.10

Price markup, εµY 0.00 0.01 -0.02 -0.03 -0.07 -0.09
Wage markup, εµW -0.16 -0.26 -0.25 -0.31 -0.47 -0.45

Risk premium, εA -0.24 -0.38 -0.35 -0.39 -0.48 -0.47
Monetary policy, εR 0.07 0.13 0.13 0.18 0.25 0.25

Structural deficit, εG 0.02 0.03 0.03 -0.03 -0.15 -0.15

Notes: The table displays the average contribution of the various shocks during an
NBER-dated recession that result from our historical shock decomposition. Values are
calculated by averaging the value of each shock component over all NBER recession
quarters. To improve readability, we normalized the size of the overall contraction to
−1%. In the data, the average is −1.24% for output and −0.5% for consumption.

the average cycle are more pronounced in US recessions. The technology shocks are less
important under the HANK model, in particular for consumption growth. By contrast,
the risk-premium shock, as a prominent demand-side shock, but also wage markup shocks
become more important through the lens of the HANK model for both consumption and
output growth in US recessions.

4.4 Adding cross-sectional shocks

Importantly, the HANK model with two assets allows us to put more structure on the risk-
premium shock. This shock captures any wedge between the return on liquid and illiquid
assets that households require. In an incomplete markets model, this can be the result of
income risk shocks (Bayer et al., 2019) or changes in tax progressivity. Both can be directly
observed and, hence, we use them to estimate the HANKX+ variant of our model.

Figure 3 shows the variance decomposition for this estimation. The new shocks pick
up a part of what is estimated as the more unspecific risk-premium shock in the baseline
specification, so that its importance declines. Together, the shocks to income risk and tax
progressivity explain one-fifth of consumption growth.
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Figure 3: Variance decompositions: Aggregate vs. cross-sectional shocks
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Notes: Conditional variance decompositions at a 4-quarter forecast horizon. HANKX corre-
sponds to the estimated model with inequality data. HANKX+ corresponds to the estimated
model with inequality data, shocks to income risk and tax progressivity (plus their observables),
as well as retained earnings.

4.5 Robustness

Our estimation technique does not allow us to estimate parameters that change the stationary
equilibrium (those in Table 2). Therefore, we consider two robustness checks for the HANK
model. First, we ask whether our findings change when we assume a coefficient of relative
risk aversion ξ, of 2 instead of 4. We find our results to be robust; in particular, the variance
decompositions of output and consumption growth are almost unchanged: See Appendix F.1.

In a similar way, we also compare a variant of the model where we use King et al.
(1988) (KPR) instead of Greenwood et al. (1988) (GHH) preferences. KPR preferences
introduce a wealth effect in labor supply such that consumption-poor households supply
more labor, and hence, aggregate labor supply increases when consumption falls. In line
with the literature on estimated DSGE models that finds small aggregate wealth effects on
the labor supply (see, e.g., Schmitt-Grohé and Uribe, 2012; Born and Pfeifer, 2014), we also
find that the data clearly prefer the GHH specification over the KPR specification of the
HANK model. The marginal data density for the model with KPR preferences is 6390 vs.
6467 for GHH preferences (based on the modified harmonic mean estimator of Geweke, 1999).
Unsurprisingly, given the lower marginal data density, the drivers of US business cycles look
somewhat different with KPR preferences. Compared to our baseline results, investment-
specific technology shocks become more important for output growth and TFP shocks more
important for consumption growth.
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What is more, the KPR version of the HANK model produces counterfactual inequality
dynamics and, hence, fails our informal “over-identification” test; see Figure F.27 in Appendix
F.2. Vice versa, however, this shows that matching inequality dynamics alongside aggregate
dynamics is not a simple implication of market incompleteness and the distribution of incomes
that we assume.

5 US inequality

We have already seen in the previous section our HANK model can simultaneously match
aggregate and inequality dynamics. In this section, we use the HANKX+ model to under-
stand the propagation from aggregate and cross-sectional shocks to inequality, the drivers
of US inequality through the lens of the model, and the importance of policy rules for the
evolution of inequality.

The model closely replicates the increase in the top 10% share in income and wealth in the
US data from 1985 to 2019, which increased by 22 and 12 percent, respectively. This holds
true for all model variants; see Figure 4. However, the HANKX model with only aggregate
shocks yields too much short-run movement in income inequality, which appears very smooth
in the data. The HANKX+ model removes most of the short-run volatility through the
introduction of retained earnings. To highlight this, we also estimate an intermediate variant
where we only add retained earnings to the HANKX model (dotted line). With retained
earnings, every quarter firms and unions pay out their profits in stationary equilibrium plus
a fraction of the deviations thereof; see Footnote 19. The remainder is retained and paid
out later. We estimate this pay-out fraction, ωU,F , to be around 13% quarterly; see Table 4
Column 8. This payout policy implies that 29% of the deviations in profits over the fiscal year
are paid out to households over the course of a year.33 Given that profits are not accounted
for in the income-inequality data at the time they are accrued but at the time they are paid
out to households, this smoothes the inequality response to markup fluctuations.

The HANKX+ model, in addition to retained earnings, features shocks to income risk
and tax progressivity that directly affect the distribution of income. Both of these shocks
are pinned down by two additional observables. We estimate the tax shocks to be very
persistent, 0.971, and the income risk shocks to be less persistent, 0.681, but with a sizable
variance of 69%. This is in line with the size of income risk variations reported in Storesletten
et al. (2004) over the business cycle. We find that fluctuations in income risk are effectively

33This is broadly in line with estimates from US Compustat data. Kahle and Stulz (2020) find that
payouts relative to operating income vary over time between 20% and 35%, see their Table 1. They estimate
an elasticity of payouts to operating income of roughly 60%, see their Table 2, implying a payout of profit
variations of 15 to 20 cents per dollar.
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Figure 4: US inequality – data vs. extended model

(a) Top 10% income share (b) Top 10% wealth share

Notes: Data (crosses) correspond to log-deviations of the annual observations of the share of
pre-tax income and wealth held by the top 10% in each distribution in the US taken from the
World Inequality Database. HANKX (dash-dotted) corresponds to the smoothed states of the
estimated model with inequality data, HANKX (retained earnings) also has retained earnings
(dotted), and HANKX+ (solid) with inequality data, shocks to income risk and tax progressivity
(plus their observables), as well as retained earnings. Shaded areas correspond to NBER-dated
recessions.

exogenous because the estimated feedback coefficient to the cycle, ΣY , is small compared
to the size of fluctuations in income risk; see Figure E.22 in the appendix for the historical
decomposition. The decrease in tax progressivity and the increase in income risk over time
allows the model to match the long-run evolution of income inequality even better.

Transitory shocks lead to slow-moving inequality dynamics, because household wealth
accumulates past transitory shocks to incomes and returns. In Appendix G, we report and
discuss the IRFs of wealth and income inequality for all nine shocks. The business cycle shocks
in our model redistribute income across households with different portfolios, and wealth
(inequality) therefore partly keeps track of past shocks. To see this, consider a textbook
permanent-income-hypothesis model. There, individual wealth follows a random walk in the
presence of purely transitory shocks to income.

This matching of the distributional data, on top of the “standard” macroeconomic time
series, does not change significantly what we infer about shocks and frictions, as we have
seen in the previous section. The next section will provide a more detailed account of the
driving forces behind US inequality.
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5.1 Historical decompositions of US inequality

To dig into the details of the evolution of inequality, Figure 5(a) plots the historical decom-
position of the top 10% income share. The decomposition of income inequality shows that
medium-term trends of income inequality primarily result from markup shocks and fluctua-
tions in income risk.

Figure 5: Historical decompositions of US inequality

(a) Top 10% income share (b) Top 10% wealth share
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Notes: Historical decomposition of the estimated HANKX+ model. Left panel shows the log-
deviations of the top 10% share in pre-tax income and the right panel of the top 10% wealth share.
Shaded areas correspond to NBER-dated recessions.

With respect to particular historical episodes, our decomposition suggests the following.
Rising wage markups and low idiosyncratic productivity risks are mainly responsible for the
decrease in income inequality throughout the 1960s until the 1970s. The 1980s are seen as
a period of liberalization through the lens of our model (both in terms of output cycles and
inequality). Wage markups fell, which increased income inequality, but this was partly offset
by falling price markups. This picture changes throughout the 1990s but most clearly after
the dot-com recession. Through the lens of our model, it is larger income risks and sharply
increasing price markups after 2000 that best explain aggregate fluctuations and the sharp
rise in income inequality these years have witnessed. Interestingly and despite the use of
partly different data sources and methodologies, the historical decomposition thus is in line
with the evidence by De Loecker and Eeckhout (2020) on the evolution of markups in the
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Table 6: Contribution of shocks to US inequality, 1985 to 2019

Shock Top 10% Income Top 10% Wealth

TFP, εZ -0.79 1.42
Inv.-spec. tech., εΨ 0.37 2.37

Price markup, εµY 12.03 4.32
Wage markup, εµW 4.43 1.00

Risk premium, εA -1.29 1.37
Income risk, εσ 3.02 -0.14

Monetary policy, εR 0.63 2.12
Structural deficit, εG 0.21 1.78

Tax progressivity, τP 1.44 0.58

Sum of shocks 19.91 14.18

Notes: The table displays the contribution (in log points) of
each shock to the increase in the top 10% share of pre-tax
income and the top 10% share of wealth from 1985 to 2019
based on our historical shock decompositions in the HANKX+
model.

US.34 The sharp increase in price markups after 2000 leads our model to predict that the
firm sector has been accumulating retained earnings ever since, in line with the data (see,
e.g., Faulkender et al., 2019, Figure 1).

Figure 5(b) shows the historical decomposition of the top 10% wealth share. Wealth
inequality fell in the first half of the sample and then increased. The pattern is similar in shape
to that of income inequality, but smoother. Of course, income inequality partly translates
into wealth inequality, but changes in asset prices play an independent and important role
for wealth inequality (in line with Kuhn et al., 2020). Hence, technology shocks but also
policy shocks are important to understanding the evolution of US wealth inequality. These
shocks affect the expected and surprise return differences between liquid and illiquid assets
(liquidity premium), which mimics the U-shape of wealth inequality, see Figure E.23 in the
appendix. Since relatively poor households hold a larger fraction of their wealth in liquid
assets, technology and policy shocks redistribute wealth directly. A low liquidity premium
redistributes to wealth-poor households while a high premium favors wealthy households.
In fact, Table 6 shows that the overall increase in wealth inequality since 1985 is explained

34There is a growing literature on the rise of markups; see, e.g., Karabarbounis and Neiman (2019), Barkai
(2020), Hall (2018), or Kehrig and Vincent (2020).
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roughly to an equal extent by three groups of shocks: the technology shocks, the policy
shocks, and the markup shocks. This is in stark contrast to the increase in income inequality
where the two markup shocks explain more than two-third of the increase.

These findings complement the prevailing literature on the evolution of inequality that
typically focuses on a few drivers of inequality at a time, such as the variance of income,
changes in the tax and transfer system, or differential ex-post returns interacting with com-
plex household portfolio structures (see, e.g., Hubmer et al., 2020; Kaymak and Poschke,
2016; Kuhn et al., 2020). We add to this literature by inspecting these three mechanisms
jointly with the business cycle shocks, which we also find to have persistent effects on in-
equality. Focusing on government policy, we find that, among the three shocks, the decline in
tax progressivity is the most important for income inequality, closely followed by monetary
policy shocks. Structural deficits play little role in income inequality. However, for wealth
inequality, structural deficits and monetary policy shocks are more important than tax pro-
gressivity. One reason for the muted effect on wealth inequality is that lower progressivity
leads to a higher capital stock through its interaction with portfolio heterogeneity, because
wealthy households have a higher propensity to invest in capital; see Luetticke (2020). This
reduces dividends and increases wages, which mitigates the effect on inequality.

5.2 Inequality counterfactuals

After looking at policy shocks, we now evaluate the importance of policy rules for the evolu-
tion of US inequality. To understand the role of systematic business cycle policies in shaping
inequality, we run a set of counterfactual monetary and fiscal policy experiments based on
the estimated model. The results of these experiments are displayed in Figure 6. In detail,
the figure displays the difference in the evolution of output, income inequality, and wealth
inequality between running the estimated shock sequence through the model (HANKX+)
with the estimated parameters and with counterfactually set policy parameters.

First, we consider an experiment where the Fed reacts more aggressively to inflation
(doubling θπ); see Figure 6, top panel, black solid line. This creates large output losses after
markup shocks because markups adjust toward their targets more quickly, but the same
policy stabilizes output very effectively after demand shocks. Given the series of shocks,
output would have been lower in the 1970s. This reflects the fact that our model attributes
a substantial fraction of the fluctuations of the 1970s to markup (cost-push) shocks. The
sharper increase of profit margins is mirrored in higher income inequality in the 1970s. Even
though income inequality returns to baseline by the mid 1980s, wealth inequality remains
elevated until the early 2000s.
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Figure 6: Counterfactual monetary and fiscal policy

M
onetary

policy
F
iscalpolicy

(a) Output (b) Top 10% income share (c) Top 10% wealth share

Notes: The panels display the evolution of output, income inequality, and wealth inequality that the model would counterfactually predict had
the government policies been different, feeding the same smoothed sequence of shocks (as in Figure 5) through the model. The lines represent
the difference (in log points) in the evolution compared to the baseline model. Monetary policy: The solid line corresponds to a setup where
we double the inflation response, θπ. The dashed line reflects the counterfactual where we double the estimated response to output, θY . Fiscal
Policy: The solid line corresponds to a setup where we allow for more aggressive deficits, doubling γY and halving γτB. The dashed line reflects
the counterfactual where we double the estimated tax response to output, γτY . Shaded areas correspond to NBER-dated recessions.
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Second, we consider a dovish policy where we double the monetary policy response to
output fluctuations (doubling θY ); see Figure 6, top panel, red dashed line. This leads in
general to more stable markups and output at the expense of higher inflation volatility; see
also Gornemann et al. (2012). It is not fully the mirror image of the hawkish policy we
looked at before because this experiment changes the response to fluctuations in output, not
inflation. A more dovish policy reduces income inequality in the 1970s and after the Great
Recession, while it increases income inequality in the 1990s, where markups were falling.
This again translates into a delayed and persistent increase in wealth inequality.

Finally, we consider alternative fiscal policy scenarios; see Figure 6, bottom panel. First,
we assume more aggressive deficit policies in response to output (doubling γY and halving γτB,
black solid line). Second, we consider a policy that adjusts taxes more heavily in response to
output (doubling γτY , red dashed line). That is, we consider a policy that lowers taxes rather
than raises government consumption when fighting a recession with a government deficit.

More aggressive stabilization through average tax rates can effectively stabilize the econ-
omy, e.g., output is higher in recessions. At the same time, it reduces income inequality in
recessions but comes at the cost of higher inequality in booms. Wealth inequality mirrors
income inequality with a delay but is more persistent. More aggressive stabilization through
fiscal deficits is on average somewhat less effective in stabilizing output compared to tax cuts.
What is more, an aggressive deficit policy makes income inequality more volatile relative to
stabilization via taxes. Despite this fact, the aggressive deficit policy stabilizes wealth in-
equality more effectively through emitting more government debt and thereby shrinking the
liquidity premium. Bayer et al. (2020) provides a more detailed discussion of the response of
the liquidity premium to government debt.

6 Conclusion

How much does inequality matter for the business cycle and vice versa? To shed light on this
two-way relationship, this paper estimates a state-of-the-art New-Keynesian business cycle
model with household heterogeneity and portfolio choice on macro and micro data. We find
that a two-asset incomplete markets model can explain simultaneously the evolution of the
US business cycle and US inequality.

Relative to the representative agent literature, our view of the US business cycle puts more
emphasis on household consumption-savings and portfolio decisions and thereby strengthens
the importance of the demand side of the model. We add to the debate on inequality the
importance of business cycle shocks and policies. Our analysis suggests that price markups
and the excess return of capital have substantially increased over the last two decades. This
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has driven down output and has increased income and wealth inequality. We find that
business cycle policies have a long-lasting effect on inequality.

These findings suggest that future research on inequality should take business cycles into
account, and the study of optimal business cycle policy should take inequality into account.
Our findings further suggest exploring the role of shocks that affect household insurance
for the business cycle. Including a micro-foundation for income risk, e.g., via search and
matching, is of first-order importance to understanding how the business cycle and policies
work differently by affecting income risk itself.
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A Data

A.1 Data for calibration

Mean illiquid assets. Fixed assets (NIPA table 1.1) over quarterly GDP (excluding net
exports; see below), averaged over 1954 – 2019.

Mean liquidity. Gross federal debt held by the public as percent of GDP (FYPUGDA188S).
Available from 1954 – 2019.

Fraction of borrowers. Taken from the Survey of Consumer Finances (1983 – 2013);
see Bayer et al. (2019) for more details.

Average top 10% share of wealth. Source is the World Inequality Database (1954 –
2019).

A.2 Data for estimation

Formally, the vector of observable variables is given by:

OBSt =
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
where ∆ denotes the temporal difference operator and bars above variables denote time-series
averages.

Unless otherwise noted, all series available at quarterly frequency from 1954Q3 to 2019Q4
from the St.Louis FED - FRED database (mnemonics in parentheses).

Output, Yt. Sum of gross private domestic investment (GPDI), personal consumption
expenditures for nondurable goods (PCND), durable goods (PCDG), and services (PCESV),
and government consumption expenditures and gross investment (GCE) divided by the GDP
deflator (GDPDEF) and the civilian noninstitutional population (CNP16OV).

Consumption, Ct. Sum of personal consumption expenditures for nondurable goods
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(PCND), durable goods (PCDG), and services (PCESV) divided by the GDP deflator (GDPDEF)
and the civilian noninstitutional population (CNP16OV).

Investment, It. Gross private domestic investment (GPDI) divided by the GDP deflator
(GDPDEF) and the civilian noninstitutional population (CNP16OV).

Real wage, wFt . Hourly compensation in the nonfarm business sector (COMPNFB)
divided by the GDP deflator (GDPDEF).

Hours worked, Nt. Nonfarm business hours worked (COMPNFB) divided by the civilian
noninstitutional population (CNP16OV).

Inflation, πt. Computed as the log-difference of the GDP deflator (GDPDEF).
Nominal interest rate, Rb

t . Quarterly average of the effective federal funds rate (FED-
FUNDS). From 2009Q1 to 2015Q4, we use the Wu and Xia (2016) shadow federal funds
rate.

Wealth inequality, p90p100wealtht . p90p100 of US net personal wealth from the World
Inequality Database. Available annually 1954 to 2019.

Income inequality, p90p100incomet . p90p100 of US pre-tax national income from the
World Inequality Database. Available annually 1954 to 2019.

Idiosyncratic income risk, st. We take the estimated time series for the variance of
idiosyncratic income from Bayer et al. (2019) who use the Survey of Income and Program
Participation. Available from 1983Q1 to 2013Q1.

Tax progressivity, τPt . We follow Ferriere and Navarro (2018) and construct our mea-
sure of tax progressivity using the average and average marginal tax rate: P = (AMTR -
ATR)/(1 - ATR). For a loglinear tax system, this measure equals the parameter capturing
the curvature of the tax function. Available annually 1954 to 2017.

Details on the construction of the tax-progressivity measure

We extend the Mertens and Montiel Olea (2018)-calculations of average (ATR) and average
marginal tax rates (AMTR) to the years 2013-2017. First, in constructing the ATR series,
we obtain total tax liability for 1929-2017, from the National Income and Product Accounts
(NIPA), Table 3.2. Federal social insurance contributions, which are added to total tax
liability, come from NIPA, Table 3.6, line 3 and 21. For total income, we take Piketty and
Saez (2003)’s income series, which uses a broader income concept based on adjusted gross
income, excluding taxable social security and unemployment insurance benefits.

The AMTR is the sum of the average marginal individual income tax rate (AMIITR) and
the average marginal payroll tax rate (AMPRT). We follow Ferriere and Navarro (2018) and
use Saez (2004)’s income concept.35 This income concept includes all income items reported

35For a detailed explanation on the construction of the AMTRs, see Appendix A of Mertens and Mon-
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on an individual’s tax return before deductions and excluding capital gains. Income items
include salaries and wages, small business/farm income, partnership and fiduciary income,
dividends, interest, rents, royalties and other small items reported as other income. Realized
capital gains are excluded in this measure of income.

To construct the AMTR, we first use several tables from the Statistics of Income (SOI)
to construct the discrete distributions of adjusted gross income by income brackets needed
for the AMIITR. Table 1.1 All Returns of the SOI archives contains information on number
of returns, adjusted gross income (AGI), and taxable income for different ranges of AGI per
return. These ranges define the discretization. Given the distribution is fit for every year
and by filing status, Table 1.2 All Returns: by Marital Status provides the equivalent table
distinguishing by filing status, e.g., married filing jointly or separately, head of household,
single, and surviving spouse. Table 1.3 All Returns: Sources of Income provides information
on how many of these returns reported income from salaries and wages. Table 1.4 All Returns:
Sources of Income, Adjustments, and Tax Items contains data on taxable income and number
of corresponding returns by bracket. Table 3.3 All Returns: Tax Liability, Tax Credits, and
Tax Payments provides information on how many filed for self-employment and their tax
liability. Finally, Table 3.4 contains the number of returns and adjusted gross income by
marginal tax bracket and filing status using.

To construct the Average Marginal Payroll Tax Rate (AMPTR), we collect data from
the 2019 Annual Statistical supplement, Table 2.A3 (columns 1, 2, 3 and 9), to obtain the
taxation of labor and self-employed earnings under the Old Age, Survivors and Disability
Insurance (OASDI) and Hospital Insurance (HI) programs. The columns respectively cover
the number of covered workers and self employed with maximum earnings as well as total
taxable earnings. Their difference allows us to calculate the total taxable earnings of covered
workers with earnings below the maximum. Information on earnings can be found in Table
4.B from the same source.

tiel Olea (2018). We follow method 1 for computing the AMIITRs.
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B RANK calibration

Table B.1 shows the steady-state parameterization of the representative agent analogue of
the HANK model. We adjust the discount factor to match a capital-to-output ratio of 11.44
(quarterly) and the level of the tax rate to match the ratio of government-spending-to-output
(0.2). All other parameters are externally chosen and equal to the parameterizaton of the
HANK model.

Table B.1: External/calibrated parameters in RANK (quarterly frequency)

Parameter Value Description Target

Households
β 0.996 Discount factor K/Y=11.44
ξ 4.00 Relative risk aversion Kaplan et al. (2018)
γ 2.00 Inverse of Frisch elasticity Chetty et al. (2011)
Firms
α 0.68 Share of labor 62% labor income
δ0 1.75% Depreciation rate 7.0% p.a.
η̄ 11 Elasticity of substitution Price markup 10%
ζ̄ 11 Elasticity of substitution Wage markup 10%
Government
τ̄L 0.23 Tax rate level G/Y = 20%
τ̄P 0.12 Tax progressivity
R̄b 1.00 Nominal rate
π̄ 1.00 Inflation

48



C MCMC diagnostics

We estimate each model using five parallel RWMH chains starting from an over-dispersed
target distribution after an extensive mode search. After burn-in, 250,000 draws from the
posterior distribution are used to compute the posterior statistics. The acceptance rates
across chains are between 20% and 30%. Here, we provide Gelman and Rubin (1992) and
Geweke (1992) convergence statistics as well as traceplots of individual parameters of the
RANK, HANK, HANKX, and HANKX+ models. The Gelman and Rubin (1992) approach
is based on comparing the estimated between-chains and within-chain variances for each
model parameter. Large differences between these variances indicate non-convergence. Table
C.2 reports the Gelman and Rubin potential scale reduction factor (PSRF) and its 97.5%
quantile based on five chains. A common rule-of-thumb declares convergence if PSRF < 1.1.
Geweke (1992) tests the equality of means of the first 10% of draws and the last 50% of draws
(after burn-in). If the samples are drawn from the stationary distribution of the chain, the two
means are equal and Geweke’s statistic has an asymptotically standard normal distribution.
Table C.3 reports the Geweke z-score statistic and the p-value for the pooled chains of
each parameter. Taking the evidence from Geweke (1992), Gelman and Rubin (1992), and
traceplot graphs together, we conclude that our chains have converged.
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Table C.2: Gelman and Rubin (1992) convergence diagnostics

RANK HANK HANKX HANKX+

Parameter PSRF 97.5% PSRF 97.5% PSRF 97.5% PSRF 97.5%

δs 1.001 1.003 1.001 1.003 1.002 1.004 1.001 1.002
φ 1.002 1.005 1.002 1.005 1.002 1.005 1.001 1.001
κ 1.002 1.006 1.002 1.006 1.001 1.004 1.004 1.010
κw 1.002 1.004 1.002 1.004 1.002 1.005 1.003 1.006
ρR 1.003 1.008 1.003 1.008 1.003 1.006 1.001 1.002
σR 1.003 1.009 1.003 1.009 1.002 1.003 1.002 1.005
θπ 1.001 1.003 1.001 1.003 1.002 1.005 1.001 1.004
θY 1.003 1.007 1.003 1.007 1.001 1.002 1.001 1.003
γB 1.007 1.016 1.007 1.016 1.008 1.021 1.002 1.005
γπ 1.001 1.002 1.001 1.002 1.004 1.011 1.002 1.004
γY 1.001 1.002 1.001 1.002 1.011 1.028 1.002 1.005
ρD 1.007 1.011 1.007 1.011 1.002 1.004 1.003 1.007
σD 1.002 1.004 1.002 1.004 1.002 1.004 1.002 1.006
ρτ 1.004 1.011 1.004 1.011 1.008 1.022 1.001 1.001
γτB 1.009 1.023 1.009 1.023 1.011 1.028 1.003 1.008
γτY 1.001 1.001 1.001 1.001 1.009 1.020 1.003 1.007
ρP – – – – – – 1.002 1.004
σP – – – – – – 1.001 1.003
ρA 1.003 1.006 1.003 1.006 1.003 1.006 1.006 1.015
σA 1.002 1.004 1.002 1.004 1.001 1.001 1.004 1.010
ρZ 1.002 1.005 1.002 1.005 1.001 1.003 1.005 1.010
σZ 1.001 1.002 1.001 1.002 1.001 1.003 1.004 1.011
ρΨ 1.001 1.002 1.001 1.002 1.001 1.002 1.002 1.004
σΨ 1.001 1.002 1.001 1.002 1.001 1.002 1.001 1.002
ρµ 1.000 1.001 1.000 1.001 1.001 1.001 1.001 1.003
σµ 1.001 1.003 1.001 1.003 1.002 1.004 1.004 1.012
ρµw 1.001 1.003 1.001 1.003 1.003 1.006 1.002 1.003
σµw 1.001 1.004 1.001 1.004 1.002 1.002 1.002 1.004
ρs – – – – – – 1.004 1.011
σs – – – – – – 1.000 1.001
ΣY – – – – – – 1.003 1.008
ωF – – – – – – 1.005 1.012
ωU – – – – – – 1.004 1.007
σmeW10 – – – – 1.001 1.003 1.001 1.002
σmeI10 – – – – 1.002 1.003 1.008 1.021
σmeτP – – – – – – 1.102 1.233
σmes – – – – – – 1.007 1.016

Note: Gelman and Rubin (1992) potential scale reduction factor (PSRF) and 97.5% quantile.
A common rule-of-thumb declares convergence if PSRF < 1.1.
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Table C.3: Geweke (1992) convergence diagnostics

RANK HANK HANKX HANKX+

Parameter z-score p-value z-score p-value z-score p-value z-score p-value

δs 0.723 0.470 -1.069 0.285 0.757 0.449 0.755 0.450
φ -0.688 0.491 -0.952 0.341 -0.154 0.878 1.414 0.157
κ -0.853 0.394 0.472 0.637 0.552 0.581 -0.722 0.470
κw 0.659 0.510 0.280 0.779 2.227 0.026 -1.639 0.101
ρR -0.877 0.381 0.202 0.840 -0.54 0.589 0.141 0.888
σR -0.309 0.757 -2.224 0.026 1.399 0.162 -0.19 0.850
θπ -0.322 0.747 -0.323 0.746 0.408 0.683 0.560 0.576
θY -0.602 0.547 -1.765 0.078 1.027 0.304 1.019 0.308
γB -0.349 0.727 -0.793 0.428 0.723 0.470 -1.40 0.162
γπ -0.687 0.492 0.025 0.980 0.241 0.809 -0.071 0.943
γY -0.277 0.782 -0.057 0.954 -1.489 0.137 0.265 0.791
ρG -1.289 0.197 -1.079 0.280 0.493 0.622 0.966 0.334
σG 1.447 0.148 0.800 0.424 0.055 0.957 -1.378 0.168
ρτ 0.918 0.359 0.197 0.844 -0.475 0.635 0.252 0.801
γτB -0.354 0.723 -0.68 0.496 0.968 0.333 -1.215 0.225
γτY 0.337 0.736 0.585 0.558 1.063 0.288 0.145 0.885
ρP – – – – – – 1.498 0.134
σP – – – – – – -2.072 0.038
ρA 1.075 0.282 0.078 0.938 -1.172 0.241 -0.503 0.615
σA -1.106 0.269 -0.085 0.933 1.314 0.189 1.588 0.112
ρZ 1.976 0.048 -0.262 0.793 -0.644 0.520 0.657 0.511
σZ 0.503 0.615 -0.332 0.740 0.165 0.869 -0.474 0.635
ρΨ 0.713 0.476 0.014 0.989 -1.005 0.315 0.390 0.697
σΨ -0.279 0.780 -0.827 0.408 -0.283 0.777 1.922 0.055
ρµ 0.379 0.705 -0.644 0.520 -0.375 0.708 0.573 0.567
σµ 1.252 0.210 -0.504 0.614 0.474 0.635 -0.548 0.584
ρµw 0.984 0.325 0.217 0.828 0.371 0.710 -0.581 0.561
σµw -0.385 0.700 0.736 0.462 -1.179 0.238 0.718 0.473
ρs – – – – – – -1.638 0.101
σs – – – – – – 1.550 0.121
ΣY – – – – – – -0.551 0.581
ωF – – – – – – -0.325 0.745
ωU – – – – – – -0.351 0.725
σmeW10 – – – – 1.518 0.129 0.278 0.781
σmeI10 – – – – 1.075 0.282 1.296 0.195
σmeτP – – – – – – 0.541 0.588
σmes – – – – – – 1.254 0.210

Note: Geweke (1992) equality of means test of the first 10% vs. the last 50% of draws. Failure
to reject the null of equal means indicates convergence.
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Figure C.1: MCMC draws of RANK model
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Figure C.2: MCMC draws of RANK model

Figure C.3: MCMC draws of HANK model
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Figure C.4: MCMC draws of HANK model
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Figure C.5: MCMC draws of HANKX model
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Figure C.6: MCMC draws of HANKX model
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Figure C.7: MCMC draws of HANKX+ model
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Figure C.8: MCMC draws of HANKX+ model
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D Inspecting model mechanisms

D.1 HANK with RANK parameterization

Figure D.9 shows the variance decompositions of output and consumption growth for the
estimated HANK and RANK models and in addition for the HANK model under the RANK
parameter estimates for the aggregate shocks and frictions (HANK’). Under the same param-
eterization, the difference between the RANK and HANK’ model becomes larger. For exam-
ple, investment-specific technology shocks are now substantially more important in HANK’
than in the RANK model. The opposite is true once the HANK model is estimated, in
which case investment-specific technology shocks are slightly less important in HANK than
in RANK. Hence, the estimation plays an important role in making the models more similar
by adjusting the estimated shocks and frictions.

Figure D.9: Variance decompositions: HANK with RANK estimates
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Notes: Conditional variance decompositions at a 4-quarter forecast horizon for 1) the estimated
RANK model, 2) the HANK model with RANK parameter estimates (denoted HANK’), and
3) the estimated HANK model.

59



D.2 RANK with HANK steady-state parameters

In the main text, we calibrate the RANK model to match the ratios of capital-to-output
and government-spending-to-output. In Figure D.10, we compare the estimation results of
the RANK model with the same steady-state parameters as in the HANK model (denoted
RANK’). As in the main text, investment-specific technology shocks are less important in
HANK than in RANK, while shocks to the risk premium and monetary policy become more
important for understanding output and consumption growth.

Figure D.10: Variance decompositions: RANK with HANK steady-state parameters
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Notes: Conditional variance decompositions at a 4-quarter forecast horizon for 1) the estimated
RANK model, 2) the estimated RANK model with HANK steady-state parameterization (de-
noted RANK’), 3) the estimated HANK model.
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D.3 Impulse Responses of Estimated RANK vs. HANK

Figures D.11, D.12, D.13, and D.14 plot the impulse response functions for the estimated
HANK and RANK model. The first panel on the top left corner of each figure shows the
shock and the remaining panels show the response of aggregate variables.
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Figure D.11: IRFs to structural deficit and monetary policy shocks

Notes: Top: IRF to a structural deficit shock. Bottom: IRF to a monetary policy
shock. Black solid line: RANK. Red dashed line: HANK.
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Figure D.12: IRFs to markup shocks

Notes: Top: IRF to a price-markup shock. Bottom: IRF to a wage-markup shock.
Black solid line: RANK. Red dashed line: HANK.
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Figure D.13: IRFs to technology shocks

Notes: Top: IRF to a TFP shock. Bottom: IRF to an MEI shock. Black solid line:
RANK. Red dashed line: HANK.
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Figure D.14: IRFs to risk premium shock

Notes: IRF to a risk premium shock. Black solid line: RANK. Red dashed line:
HANK.
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D.4 Impulse Responses of Estimated HANKX vs. HANKX+

Figures D.15, D.16, D.17, D.18, and D.19 plot the impulse response functions for the esti-
mated HANKX and HANKX+ model. The first panel on the top left corner of each figure
shows the shock and the remaining panels show the response of aggregate variables.
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Figure D.15: IRFs to structural deficit and monetary policy shocks

Notes: Top: IRF to a structural deficit shock. Bottom: IRF to a monetary policy
shock. Black solid line: HANKX. Red dashed line: HANKX+.
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Figure D.16: IRFs to markup shocks

Notes: Top: IRF to a price-markup shock. Bottom: IRF to a wage-markup shock.
Black solid line: HANKX. Red dashed line: HANKX+.
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Figure D.17: IRFs to technology shocks

Notes: Top: IRF to a TFP shock. Bottom: IRF to an MEI shock. Black solid line:
HANKX. Red dashed line: HANKX+.
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Figure D.18: IRFs to risk premium and income risk shocks

Notes: Top: IRF to a risk premium shock. Bottom: IRF to an income risk shock.
Black solid line: HANKX. Red dashed line: HANKX+.
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Figure D.19: IRFs to a tax progressivity shock

Notes: IRF to a tax progressivity shock. Black solid line: HANKX. Red dashed line:
HANKX+.

71



E Historical decompositions of observables:

HANK and HANKX+

Figure E.20 shows the historical decomposition of all observables for the estimation of the
HANK model. Figures E.21 and E.22 show the historical decomposition of all observables for
the estimation of the HANKX+ model. shows the historical decomposition of non-observed
variables markups and liquidity premium in the HANKX+ model.
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Figure E.20: Historical decompositions of all observables in HANK

(a) Output growth (b) Consumption growth

(c) Investment growth (d) Real wage

(e) Hours worked (f) Policy Rate

(e) Inflation

Notes: Historical decompositions of all observables in HANK. Shaded areas correspond
to NBER-dated recessions.
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Figure E.21: Historical decompositions of all observables in HANKX+

(a) Output growth (b) Consumption growth

(c) Investment growth (d) Real wage

(e) Hours worked (f) Policy Rate

(e) Inflation

Notes: Historical decompositions of all observables in HANKX+. Shaded areas corre-
spond to NBER-dated recessions.
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Figure E.22: Historical decompositions of all observables in HANKX+ ctd.

(a) Top 10 wealth share (b) Top 10 income share

(c) Income risk (d) Tax progressivity

Shock 

■ t fp inv .-spec. tech.

mon. policy ■ structural deficit

■ price markup wage markup ■ risk premium 

■ tax prog. ■ incarne risk

Notes: Historical decompositions of all observables in HANKX+. Shaded areas corre-
spond to NBER-dated recessions.
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Figure E.23: Further historical decompositions of non-observed variables in HANKX+

(a) Liquidity premium (b) Price markups

(c) Retained earnings relative to quarterly output (in p.p)
Shock 

■ t fp inv .-spec. tech.

mon. policy ■ structural deficit

■ price markup wage markup ■ risk premium 

■ tax prog. ■ incarne risk

Notes: Historical decompositions in HANKX+. Shaded areas correspond to NBER-dated
recessions.
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F Further model variants

Table F.4: Prior and posterior distributions of estimated parameters

Parameter Prior Posterior

Distribution Mean Std. Dev. HANK (RA2) HANK (KPR) HANKX (ret. earn.)

Frictions

δs Gamma 5.00 2.00 1.888 1.855 1.398
(1.527, 2.310) (1.349, 2.389) (1.182, 1.629)

φ Gamma 4.00 2.00 0.096 0.173 0.144
(0.062, 0.137) (0.126, 0.229) (0.106, 0.188)

κ Gamma 0.10 0.01 0.097 0.079 0.099
(0.083, 0.113) (0.069, 0.090) (0.085, 0.114)

κw Gamma 0.10 0.01 0.111 0.110 0.101
(0.093, 0.129) (0.091, 0.130) (0.086, 0.118)

Debt and monetary policy rules

ρR Beta 0.50 0.20 0.762 0.738 0.780
(0.730, 0.791) (0.705, 0.770) (0.749, 0.810)

σR Inv.-Gamma 0.10 2.00 0.258 0.237 0.266
(0.235, 0.284) (0.217, 0.257) (0.241, 0.292)

θπ Normal 1.70 0.30 2.285 1.711 2.504
(2.089, 2.499) (1.572, 1.864) (2.275, 2.750)

θY Normal 0.13 0.05 0.109 0.133 0.100
(0.084, 0.136) (0.113, 0.154) (0.073, 0.127)

γB Gamma 0.10 0.08 0.341 0.056 0.174
(0.252, 0.441) (0.026, 0.090) (0.131, 0.221)

γπ Normal 0.00 1.00 -1.137 -1.375 -1.153
(-1.281, -0.998) (-1.531, -1.218) (-1.286, -1.021)

γY Normal 0.00 1.00 -0.937 -0.479 -1.137
(-1.067, -0.821) (-0.54, -0.422) (-1.281, -1.008)

ρD Beta 0.50 0.20 0.983 0.972 0.994
(0.965, 0.995) (0.952, 0.989) (0.987, 0.998)

σD Inv.-Gamma 0.10 2.00 0.315 0.421 0.295
(0.283, 0.350) (0.380, 0.467) (0.267, 0.325)

Tax rules

ρτ Beta 0.50 0.20 0.335 0.351 0.489
(0.181, 0.486) (0.116, 0.646) (0.375, 0.600)

γτB Normal 0.00 1.00 1.667 -4.029 0.779
(1.284, 2.099) (-4.711, -3.427) (0.602, 0.985)

γτY Normal 0.00 1.00 3.116 -0.002 4.252
(2.153, 4.180) (-0.155, 0.142) (3.516, 5.032)

ρP Beta 0.50 0.20 – – –

σP Inv.-Gamma 0.10 2.00 – – –

Structural shocks

ρA Beta 0.50 0.20 0.929 0.962 0.984
(0.890, 0.966) (0.946, 0.976) (0.968, 0.995)

σA Inv.-Gamma 0.10 2.00 0.185 0.159 0.155
(0.153, 0.219) (0.140, 0.180) (0.137, 0.175)
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Table F.4: Prior and posterior distributions of estimated parameters - continued

Parameter Prior Posterior

Distribution Mean Std. Dev. RANK HANK HANKX

ρZ Beta 0.50 0.20 0.994 0.913 0.994
(0.989, 0.998) (0.904, 0.922) (0.990, 0.998)

σZ Inv.-Gamma 0.10 2.00 0.596 1.215 0.599
(0.554, 0.641) (1.124, 1.312) (0.557, 0.645)

ρΨ Beta 0.50 0.20 0.966 0.920 0.973
(0.943, 0.985) (0.880, 0.956) (0.962, 0.983)

σΨ Inv.-Gamma 0.10 2.00 1.881 1.410 2.047
(1.621, 2.181) (1.208, 1.632) (1.795, 2.330)

ρµ Beta 0.50 0.20 0.876 0.958 0.894
(0.842, 0.907) (0.941, 0.974) (0.858, 0.925)

σµ Inv.-Gamma 0.10 2.00 1.736 0.642 1.700
(1.545, 1.953) (0.549, 0.750) (1.515, 1.908)

ρµw Beta 0.50 0.20 0.848 0.666 0.865
(0.797, 0.897) (0.607, 0.721) (0.825, 0.900)

σµw Inv.-Gamma 0.10 2.00 5.866 5.680 6.955
(4.968, 6.919) (4.559, 7.017) (6.029, 8.054)

Income risk process

ρs Beta 0.50 0.20 – – –

σs Inv.-Gamma 1.00 2.00 – – –

ΣY Normal 1.00 100.00 – – –

Retained earnings processes

ωF Uniform 0.50 0.29 – – 0.221
(0.113, 0.394)

ωU Uniform 0.50 0.29 – – 0.203
(0.164, 0.252)

Measurement errors

σmeW10 Inv.-Gamma 0.05 0.01 – – 1.930
(1.645, 2.260)

σmeI10 Inv.-Gamma 0.05 0.01 – – 5.139
(4.415, 5.989)

σmeτP Inv.-Gamma 0.05 0.01 – – –

σmes Inv.-Gamma 0.05 0.01 – – –

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages
by multiplying by 100. HANK (RA2) denotes HANK model with risk aversion 2 instead of 4 (see Appendix
F.1), HANK (KPR) denotes HANK model with KPR instead of GHH preferences (see Appendix F.2).
HANKX (ret. earn.) is an intermediate variant where we only add retained earnings to the HANKX model
(see Section 5).
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F.1 Alternative risk aversion

We also estimate the model with a coefficient of relative risk aversion of 2 instead of 4. This
requires a recalibration of the steady state to match the same targets as listed in Table 3.
In particular, we adjust the discount factor, the asset market participation frequency, the
fraction of entrepreneurs, and the borrowing penalty. The re-calibration yields β = 0.9912,
λ = 0.065, ζ = 1/2500, and R̄ = 0.016.

Figure F.24 shows the variance decomposition of output and consumption growth for the
baseline calibration (HANK) and for the new calibration with risk aversion 2 (HANK(RA2)).
The decompositions are very similar. Investment-specific technology shocks become even
somewhat less important relative to the baseline.

Figure F.25 shows the historical decomposition of US inequality for the estimation only
on aggregate data. Our finding of a U-shaped evolution of inequality in line with the US
experience is robust to changes in risk aversion.

Figure F.24: Variance decompositions: Output and consumption growth (risk aversion 2)
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Notes: Conditional variance decompositions at a 4-quarter forecast horizon for the estimated
HANK model with a coefficient of relative risk aversion of 2 and 4 [w/o inequality data].
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Figure F.25: US inequality – data vs. model with risk aversion 2

(a) Top 10% income share (b) Top 10% wealth share
Shock 
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Notes: Top row: Data (crosses) correspond to log-deviations of the annual observations of
the share of pre-tax income and wealth held by the top 10% in each distribution in the US
taken from the World Inequality Database. Bottom row: Historical decomposition based on
the estimated HANK model with risk aversion 2. Shaded areas correspond to NBER-dated
recessions.
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F.2 KPR preferences

We also estimate the model with preferences that are additively separable in consumption
and leisure. The felicity function u now reads:

u(cit, nit) =
c1−ξ
it − 1

1− ξ
− Γ

n1+γ
it − 1

1 + γ
,

with risk aversion parameter ξ > 0 and inverse Frisch elasticity γ > 0. The first-order
condition for labor supply is:

nit =

[
1

Γ
u′(c)(1− τPt )(1− τLt )(whit)

(1−τPt )

]( 1

γ+τPt

)
.

We recalibrate the steady state to match the capital-to-output ratio, the bonds-to-output
ratio, the fraction of borrowers, and the wealth held by the top 10% of households as reported
in Figure 3. This yields a discount factor of β = 0.987, a portfolio adjustment probability of
λ = 14%, a borrowing penalty of R̄ = 3.78%, and a probability of becoming an entrepreneur
of 0.04%.

Figure F.26: Variance decompositions: Output and consumption growth (KPR prefer-
ences)
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Notes: Conditional variance decompositions at a 4-quarter forecast horizon for the estimated
HANK model with KPR preferences and the baseline HANK model with GHH preferences [w/o
inequality data].

81



Figure F.27: US inequality – data vs. model with KPR preferences

(a) Top 10% income share (b) Top 10% wealth share
Shock 
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Notes: Top row: Data (crosses) correspond to log-deviations of the annual observations of
the share of pre-tax income and wealth held by the top 10% in each distribution in the US
taken from the World Inequality Database. Bottom row: Historical decomposition based on
the estimated HANK model with KPR preferences. Shaded areas correspond to NBER-dated
recessions.
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G Further results on inequality dynamics

Why is the model able to explain the slow-moving inequality dynamics? The slow-moving
inequality dynamics are not unique to our model but are known in the incomplete markets
literature. Typically, this literature studies transitions from steady state to steady state,
which can take a very long time. Gabaix et al. (2016), for example, find these transitions to
be very slow-moving. These slow dynamics imply that business cycle shocks can accumulate
in terms of inequality and an incomplete markets economy that is continuously hit by business
cycle shocks generates inequality dynamics in line with the data.

Figure G.28 presents the estimated impulse responses of inequality to all nine shocks
based on the HANKX+ model. The general picture is that income inequality shows the most
transitory movements. Wealth inequality moves most persistently after all shocks because it
is driven by accumulation decisions. Consumption, driven by both income and wealth, shows
both short- and long-run dynamics.

Monetary policy and risk premium shocks both increase inequality through a rise in
price markups that benefits mostly the (wealthy) entrepreneurs. The effects on income and
consumption inequality are rather transitory, while wealth inequality increases persistently.

Turning to fiscal policy, increasing the structural deficit lowers income and wealth inequal-
ity but increases consumption inequality. On the tax side, a shock to the progressiveness of
the tax schedule causes persistently lower income, consumption, and wealth inequality.

Positive technology shocks lead to a persistent decline in consumption inequality. Higher
investment-specific technology lowers the price of capital and hence lowers wealth and income
inequality. The TFP shock, by contrast, increases income and wealth inequality by raising
productivity and therefore the returns to capital held by the wealthy households.

Price and wage markup shocks both have persistent effects on income, consumption, and
wealth inequality; however, they differ markedly in the sign of their effects. While price
markups increase inequality because they raise profits that go to entrepreneurs, a rise in the
target wage markup lowers inequality by increasing wage compression.

Higher income risk leads to a quick increase in income and consumption inequality as
poorer households over-proportionally increase their liquid asset holdings for insurance pur-
poses. Wealth inequality falls because poor households react strongly by accumulating extra,
mostly liquid, assets.
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Figure G.28: Impulse responses of inequality

Monetary shock Risk premium shock

Structural deficit shock Tax progressivity shock

TFP shock MEI shock

Price markup shock Wage markup shock

Income risk shock

Notes: The figures display the impulse responses of income, consumption, and wealth inequality in
response to the shocks labeled above. Parameter estimates from HANKX+. See main text for further
details.
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